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Motivation: Search and Biased Beliefs

e Search frictions: popular explanation for demand for expensive / low-quality options:

*> Price dispersion in homogeneous-good markets (Sorensen 2000).
> Perhaps more severe with differentiated goods / many options:

health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al
2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).

e Policy solutions: high “search costs” = rely less on search
» simplify choice sets (Brown / Jeon 2023); add default options (HK2015); use
intermediaries (Boehm 2023).
e Alternative explanation: wrong info/beliefs can distort perceived returns to search:
» Overestimate quality of “known" options or underestimate unknowns
= need to rationalize data
= Research Question: How do families' limited awareness of options, misperceptions
and inaccurate beliefs about characteristics interact with preferences and search costs
to distort their information-acquisition efforts, choices, and outcomes in a complex,
high-stakes decision?
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Setting: Education Markets in Chile
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e Methods: novel microdata + field experiments + model:

We model demand for schools w/ heterogeneous preferences + search costs:
> Imperfect awareness of schools
» Endogenous (sequential)
» Misperceptions of known schools’ price, quality score, match quality, admission chance.
> Biased beliefs about these four objects over unknown schools.
Novel search data and surveys:
» Set up "school explorer” platform w/ personalized information, track search activity
> 3 survey waves; measure beliefs, perceptions, awareness, preferences pre/post
> Link survey and clicks to admin applications and enrollment
RCTs:

“Search Aid” via explorer: dist'n of school characteristics + salience of good schools
“Feedback” using app data: info about “known" schools, targeting misperceptions
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Today's Talk

e Many frictions exist. But the most important are:

imperfectly-revealing search technology
misperceptions about observables of known schools

*» Fix (1) -> welfare gains + ~ 50% more search
» Fix (1) + (2) -> more welfare; quality gains ~ full info; close SES school quality gap.
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e Many frictions exist. But the most important are:

imperfectly-revealing search technology
misperceptions about observables of known schools

*» Fix (1) -> welfare gains + ~ 50% more search
» Fix (1) + (2) -> more welfare; quality gains ~ full info; close SES school quality gap.

e Rest of talk:

example

data + descriptives
experiments

model

results
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Motivating Example

Household knows outside option (sure payoff 0), one “inside” school.

> Payoff uy =1 if assigned to this school.
> Rejected with probability r, € [0,1].

Can pay to draw one more school (up, ) ~ f(-) before submitting ranking.

Chile uses student-proposing deferred acceptance with independent lotteries:
= optimal to rank truthfully.

(1=r)uj+ (1= rue  if 4> ue>0

Expected payoff of optimal app: {(1 ) £ s <0 or don't search
-n)u 2 .
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Data + Experiments Outline

Surveys measure awareness, perceptions (known schools), beliefs (unknown schools)
Baseline: also has subj. ROL, perceived returns to search
Midline: gives repeated perception measures
Endline: awareness and perceptions only

Sample: recruited from preschools; restrict to first-time preK / K / 1st applicants
> In study if and only if complete baseline survey

Timing:
1 Baseline survey. Search RCT. Explorer made available. Almost all on-platform search.
2 Feedback RCT: uses submitted apps, 1 week before deadline.

2-3 Midline survey occurs slightly before/after (timing varied).
3 Final apps due; endline survey post-deadline.

Admin data: demographics and repeated measures of rank-order lists:
» Three snapshots: baseline (survey), “just before feedback” and final (admin).
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Descriptive Analysis

o Awareness:

> Families don’t know all the schools at baseline [TODAY]

*» Closer/higher quality schools more likely to be known

e Perceptions of known schools’ characteristics:

» Key vertical characteristic: official gov't quality index € {1,...,4}.
» Households overestimate quality of schools they like, especially 1st choice [TODAY]

> Households also mispredict price (too high), admissions chances (compression)
o Beliefs about unknown schools:

> Households overestimate quality and price of unknown schools
o Preferences:

» ROL explained by subjective perceptions of quality and price, not truth
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Search Experiment:

Number of Highlight-worthy Location of Highlight-worthy
schools (high Q/Low P) schools (high Q/Low P)

Treatment 1 and 2 Treatment 1 Treatment 2
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Experimental Results in Paper

Search Interventions:
e T1: Inform X's distr. — Effects on beliefs (L/H), knowledge (H), search (H)
— No effects on application outcomes
e T2: Inform X's distr. — Effects on beliefs (L/H), knowledge (H), applications (H)
+ search tech.  — No effects on “number of searches”
Feedback Intervention:
e T: Inform X's + recs  — Effects on perceptions (Q for H/L, P for L)

— Effects on applications (L) and assignment (L)

Search intervention effects concentrated among H (high-SES), Feedback intervention
among L (low-SES)
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Model Overview

o Will present (and estimate) model in two steps:

Preferences, awareness, perceptions of known schools’ characteristics:

» Suffices for demand under counterfactuals with given info assignment (e.g. full info)

Admissions chances, beliefs about unknowns, search costs and technology:

> Needed for endogenous info acquisition, e.g. change in info before search decisions

14 /20
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e w5, index for awareness (can't apply if 77, <0), perceptions (more accurate if 77, > 1.)

» Excluded info shifters w: treatment indicators, search (pin clicks, profile views)
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e w7 index for awareness (can't apply if w7, <0), perceptions (more accurate if 77, > 1.)

» Off-platform learning: shocks vj; ~ N(0,%X"), time indicators wj; ~ N(p ™, X7).
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° ﬁ;"ﬁ: subj. expected payoff of j given i's info at time t.

> Mean utility and “discoverability” (d,7): correlated RE; means depend on (true) x.
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Model and Estimation

Step 1 Estimation: Gibbs Sampler
Exploit repeated within-person measurements of X, 7, rankings.

> Many objects (awareness, perceptions) observed.
> £ are "known by name” schools excessively penalized / overdispersed?

Allow meas. error on every survey variable.

ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
> “Change of variables, then DiD".

Step 2: model admissions optimism and compression; subj. beliefs ﬁ(x); subj. dist'n of
(€1,¢); click probs if search; search costs.
> Search is sequential.
> conditional on “one more pin click”, discovered school is stochastic.
> “one-step lookahead” heuristic: search if subj. gain E(U;(n")|mir) - U(mit) exceeds cost.
> Beliefs over unknowns: latent heterogeneity; nests Bayesian updating

Estimation: MLE/SMLE.
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Counterfactuals Overview

Gains from full information 4+ decomposition:

> Base simulation: remove treatments
> Full information: full information about all schools + we correct all misperceptions
> Better search (S§*): improves and simplifies the search technology

> Better search (S*) + correct biases, misperceptions, and imperfect information

Search Activity and Search Costs:
> Does individual level search change with counterfactuals?
> Gradual Reduction in Search Costs

Misspecified models:

> Estimate the model dropping data on X and ignoring misperceptions

» Effects on countrerfactual analysis
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Gains of Full Information + Decomposition

S+ all (88%)

S* (29%) | 8" +2 (94%)
L - aad
(1) Baseline (2) Full Info (100%)
S+ all (91%)
| 8" (27%) | 8+ (95%)
(1) Baseline: (2) Full Info (100%)
2.95 3 3.05 3.1 3.15 32 3.25 3
Quality
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Gains of Full Information + Decomposition

S*+ all (66%)
S* (32‘?{?)3* +z {50%)|

1 (]
(ll) Baseline (2) Full Info (1I 0%)

S*+ all (73%)
S (21%) 8"+ (63%)

{1) Ba&elme - (2) Full Info (100%)

4 0.6 0.8 1 12 1.4 1.6 1.
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Other Results in Paper:

e Improving search technology induces 47% more search.

e S* > 5%+ X: zero avg. effect on search, but large absolute changes; some search
more, others less.

Gradual reduction in search costs: need to almost eliminate to beat better info.

Misspecified models: assume X = x, get wrong sign of quality impacts of info provision.
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Conclusions

Results: Households’ inaccurate perceptions distort search and applications

» Households value quality — but respond to perception, not truth.

> Systematically overestimate quality of initial most-preferred “known" school.

Counterfactuals: Perfect takeup of info intervention would close quality SES gap

» Differences between groups: perceptions of x's, not admissions optimism or prefs.

> But in practice, high-education households respond more to our search intervention.

Methods: Crucial to model biases/imperfect awareness of “known” options.

Agenda: This paper takes schools’ quality, peers as given. Input for eqgbm analysis.
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