Search and Biased Beliefs in Education Markets

Patrick Agte¹ Claudia Allende² Adam Kapor³ Chris Neilson¹ Fernando Ochoa⁴

¹Yale University ²Stanford GSB ³Princeton University ⁴NYU

NBER SI IO

July 2024

• Search frictions: popular explanation for demand for expensive / low-quality options:

- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).

- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).
 - Perhaps more severe with differentiated goods / many options:
 - health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al 2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).

- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).
 - Perhaps more severe with differentiated goods / many options:
 - health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al 2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).
- Policy solutions: high "search costs" \implies rely less on search

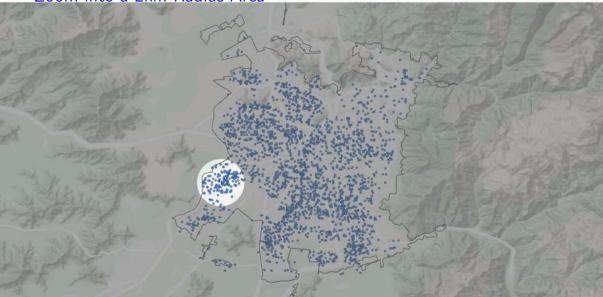
- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).
 - Perhaps more severe with differentiated goods / many options:
 - health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al 2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).
- Policy solutions: high "search costs" \implies rely less on search
 - simplify choice sets (Brown / Jeon 2023); add default options (HK2015); use intermediaries (Boehm 2023).

- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).
 - Perhaps more severe with differentiated goods / many options:
 - health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al 2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).
- Policy solutions: high "search costs" \implies rely less on search
 - simplify choice sets (Brown / Jeon 2023); add default options (HK2015); use intermediaries (Boehm 2023).
- Alternative explanation: wrong info/beliefs can distort perceived returns to search:

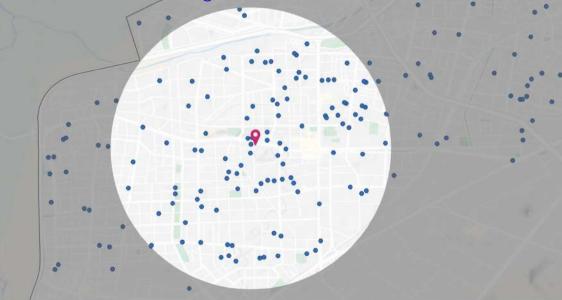
- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).
 - Perhaps more severe with differentiated goods / many options:
 - health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al 2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).
- Policy solutions: high "search costs" \implies rely less on search
 - simplify choice sets (Brown / Jeon 2023); add default options (HK2015); use intermediaries (Boehm 2023).
- Alternative explanation: wrong info/beliefs can distort perceived returns to search:
 - Overestimate quality of "known" options or underestimate unknowns
 ⇒ need smaller search cost to rationalize data

- Search frictions: popular explanation for demand for expensive / low-quality options:
 - Price dispersion in homogeneous-good markets (Sorensen 2000).
 - Perhaps more severe with differentiated goods / many options:
 - health plans (Handel and Kolstad 2015); mortgages (AGHMSY 2024, Bhattacharya et al 2024); schools (Ajayi and Sidibe 2022; AKNZ 2022).
- Policy solutions: high "search costs" \implies rely less on search
 - simplify choice sets (Brown / Jeon 2023); add default options (HK2015); use intermediaries (Boehm 2023).
- Alternative explanation: wrong info/beliefs can distort perceived returns to search:
 - Overestimate quality of "known" options or underestimate unknowns
 ⇒ need smaller search cost to rationalize data
- Research Question: How do families' limited awareness of options, misperceptions and inaccurate beliefs about characteristics interact with preferences and search costs to distort their information-acquisition efforts, choices, and outcomes in a complex, high-stakes decision?

Zoom into a 2km Radius Area



Almost 100 Schools Offering K



Placement is uncertain; must submit ranked list to assignment mech.

• Nationwide school choice process: Collaboration w/ Government and EdTech NGO

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- I We model demand for schools w/ heterogeneous preferences + search costs:

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- I We model demand for schools w/ heterogeneous preferences + search costs:
 - Imperfect awareness of schools

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- I We model demand for schools w/ heterogeneous preferences + search costs:
 - Imperfect awareness of schools
 - Endogenous (sequential) search decisions

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- I We model demand for schools w/ heterogeneous preferences + search costs:
 - Imperfect awareness of schools
 - Endogenous (sequential) search decisions
 - Misperceptions of known schools' price, quality score, match quality, admission chance.

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- We model demand for schools w/ heterogeneous preferences + search costs:
 - Imperfect awareness of schools
 - Endogenous (sequential) search decisions
 - Misperceptions of known schools' price, quality score, match quality, admission chance.
 - Biased beliefs about these four objects over unknown schools.

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- We model demand for schools w/ heterogeneous preferences + search costs:
 - Imperfect awareness of schools
 - Endogenous (sequential) search decisions
 - Misperceptions of known schools' price, quality score, match quality, admission chance.
 - Biased beliefs about these four objects over unknown schools.
- Novel search data and surveys:
 - Set up "school explorer" platform w/ personalized information, track search activity
 - ▶ 3 survey waves; measure beliefs, perceptions, awareness, preferences pre/post
 - Link survey and clicks to admin applications and enrollment

- Nationwide school choice process: Collaboration w/ Government and EdTech NGO
- Methods: novel microdata + field experiments + model:
- We model demand for schools w/ heterogeneous preferences + search costs:
 - Imperfect awareness of schools
 - Endogenous (sequential) search decisions
 - Misperceptions of known schools' price, quality score, match quality, admission chance.
 - Biased beliefs about these four objects over unknown schools.
- Novel search data and surveys:
 - Set up "school explorer" platform w/ personalized information, track search activity
 - ▶ 3 survey waves; measure beliefs, perceptions, awareness, preferences pre/post
 - Link survey and clicks to admin applications and enrollment
- 3 RCTs:
 - II "Search Aid" via explorer: dist'n of school characteristics + salience of good schools
 - 2 "Feedback" using app data: info about "known" schools, targeting misperceptions

Today's Talk

• Many frictions exist. But the most important are:

- imperfectly-revealing search technology
- misperceptions about observables of known schools
- Fix (1) -> welfare gains $+ \approx 50\%$ more search
- Fix (1) + (2) -> more welfare; quality gains \approx full info; close SES school quality gap.

Today's Talk

• Many frictions exist. But the most important are:

- imperfectly-revealing search technology
- misperceptions about observables of known schools
- Fix (1) -> welfare gains $+ \approx 50\%$ more search
- Fix (1) + (2) -> more welfare; quality gains \approx full info; close SES school quality gap.
- Rest of talk:
 - 1 example
 - 2 data + descriptives
 - experiments
 - 4 model
 - 5 results

- Household knows outside option (sure payoff 0), one "inside" school.
 - Payoff $u_1 = 1$ if assigned to this school.
 - Rejected with probability $r_1 \in [0, 1]$.

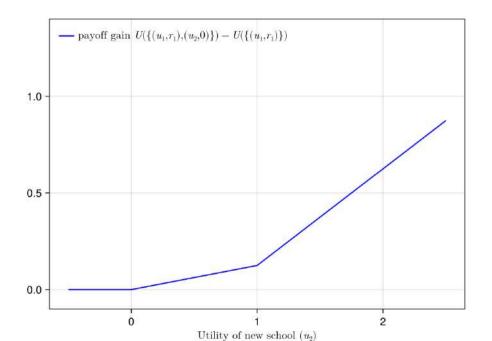
- Household knows outside option (sure payoff 0), one "inside" school.
 - Payoff $u_1 = 1$ if assigned to this school.
 - Rejected with probability $r_1 \in [0, 1]$.
- Can pay to draw one more school $(u_2, r_2) \sim f(\cdot)$ before submitting ranking.

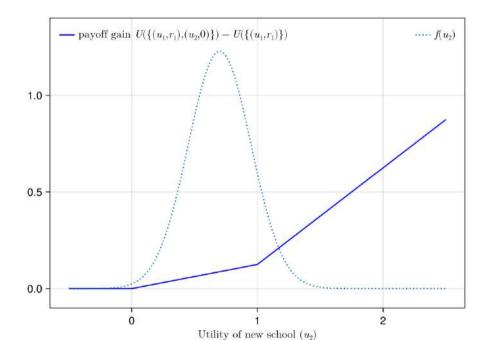
- Household knows outside option (sure payoff 0), one "inside" school.
 - Payoff $u_1 = 1$ if assigned to this school.
 - Rejected with probability $r_1 \in [0, 1]$.
- Can pay to draw one more school $(u_2, r_2) \sim f(\cdot)$ before submitting ranking.
- Chile uses student-proposing deferred acceptance with independent lotteries:

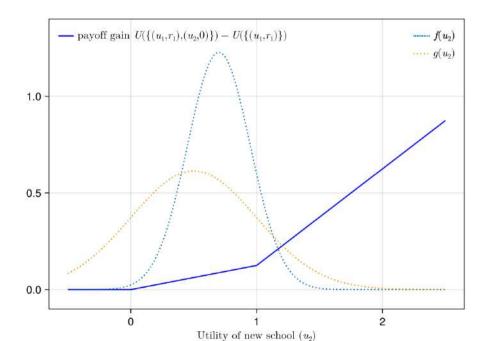
- Household knows outside option (sure payoff 0), one "inside" school.
 - Payoff $u_1 = 1$ if assigned to this school.
 - Rejected with probability $r_1 \in [0, 1]$.
- Can pay to draw one more school $(u_2, r_2) \sim f(\cdot)$ before submitting ranking.
- Chile uses student-proposing deferred acceptance with independent lotteries:
 - \Rightarrow optimal to rank truthfully.

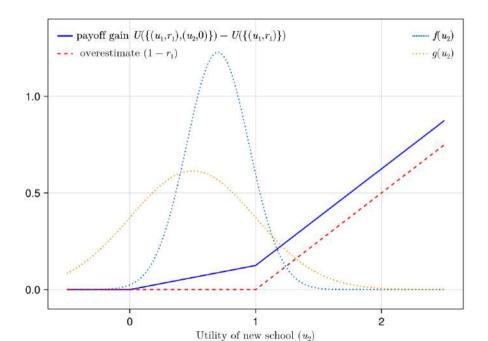
- Household knows outside option (sure payoff 0), one "inside" school.
 - Payoff $u_1 = 1$ if assigned to this school.
 - Rejected with probability $r_1 \in [0, 1]$.
- Can pay to draw one more school $(u_2, r_2) \sim f(\cdot)$ before submitting ranking.
- Chile uses student-proposing deferred acceptance with independent lotteries:
 - \Rightarrow optimal to rank truthfully.

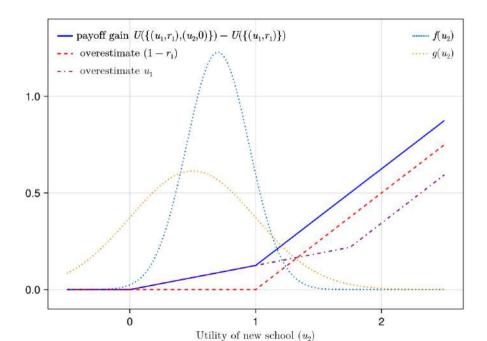
• Expected payoff of optimal app:
$$\begin{cases} (1-r_j)u_j + r_j(1-r_k)u_k & \text{if } u_j > u_k > 0\\ (1-r_1)u_1 & \text{if } u_2 < 0 \text{ or don't search.} \end{cases}$$











Data + Experiments Outline

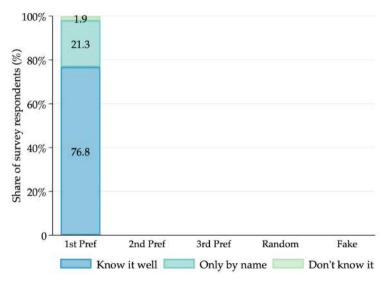
- Surveys measure awareness, perceptions (known schools), beliefs (unknown schools)
 - I Baseline: also has subj. ROL, perceived returns to search
 - Midline: gives repeated perception measures
 - Endline: awareness and perceptions only
- Sample: recruited from preschools; restrict to first-time preK / K / 1st applicants
 - In study if and only if complete baseline survey
- Timing:
 - 1 Baseline survey. Search RCT. Explorer made available. Almost all on-platform search.
 - 2 Feedback RCT: uses submitted apps, 1 week before deadline.
 - 2-3 Midline survey occurs slightly before/after (timing varied).
 - 3 Final apps due; endline survey post-deadline.
- Admin data: demographics and repeated measures of rank-order lists:
 - Three snapshots: baseline (survey), "just before feedback" and final (admin).

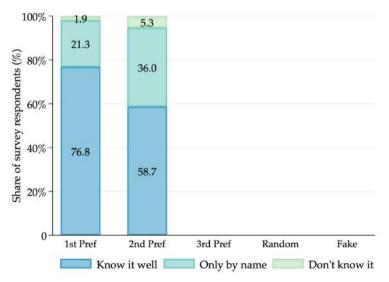
Descriptive Analysis

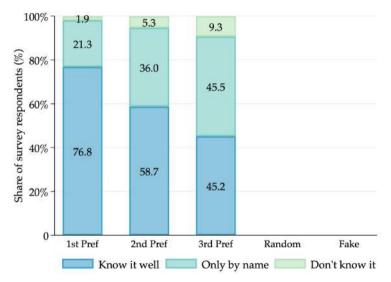
- Awareness:
 - Families don't know all the schools at baseline
 - Closer/higher quality schools more likely to be known
- Perceptions of known schools' characteristics:
 - Key vertical characteristic: official gov't quality index $\in \{1, \ldots, 4\}$.
 - Households overestimate quality of schools they like, especially 1st choice [TO
 - Households also mispredict price (too high), admissions chances (compression)
- Beliefs about unknown schools:
 - Households overestimate quality and price of unknown schools

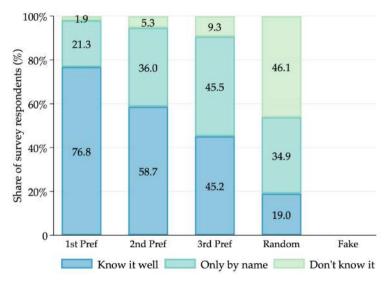
• Preferences:

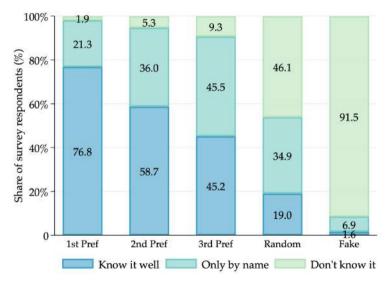
ROL explained by subjective perceptions of quality and price, not truth



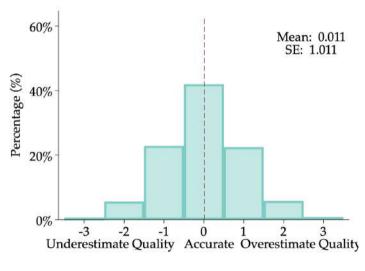






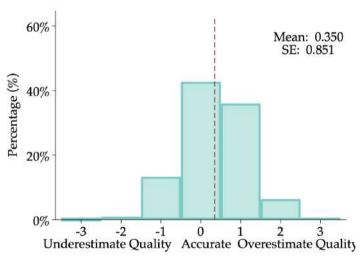


Families overestimate quality of known, liked schools Winner's curse?

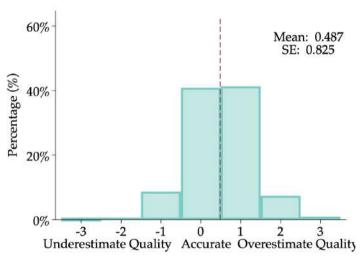


Random not-in-app

Families overestimate quality of known, liked schools Winner's curse?



Families overestimate quality of known, liked schools Winner's curse?



1st Preference

Search Experiment:

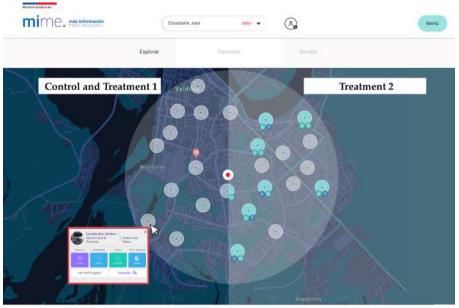
Number of Highlight-worthy schools (high Q/Low P)

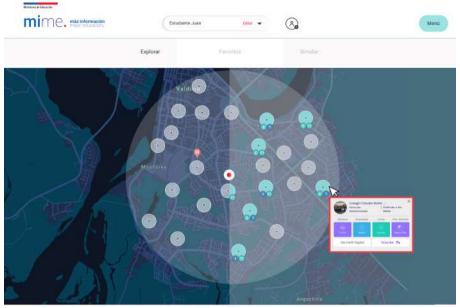
Location of Highlight-worthy schools (high Q/Low P)

Treatment 1 and 2

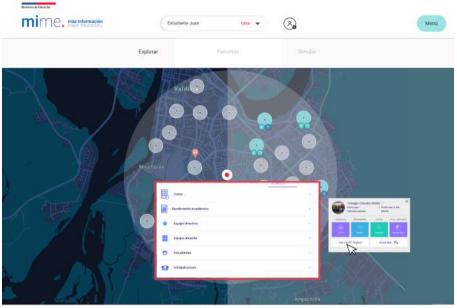
Treatment 1

Treatment 2

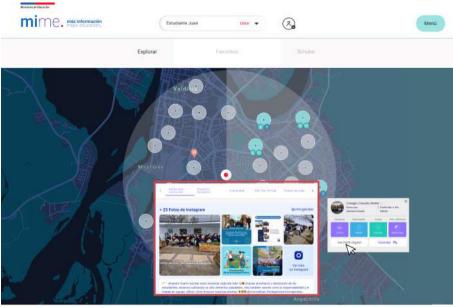


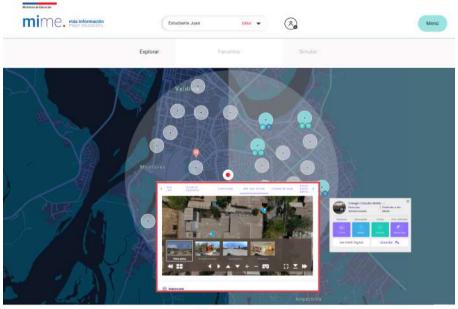


🔁 consiliumbots



C consiliumbats





🔁 consiliumbats

Experimental Results in Paper

Search Interventions:

• T1: Inform X's distr. \rightarrow Effects on beliefs (L/H), knowledge (H), search (H)

 \rightarrow No effects on application outcomes

• T2: Inform X's distr. \rightarrow Effects on beliefs (L/H), knowledge (H), applications (H)

+ search tech. \rightarrow No effects on "number of searches"

Feedback Intervention:

• T: Inform $X's + \text{recs} \rightarrow \text{Effects on perceptions } (Q \text{ for } H/L, P \text{ for } L)$

 \rightarrow Effects on applications (L) and assignment (L)

Search intervention effects concentrated among H (high-SES), Feedback intervention among L (low-SES)

- Will present (and estimate) model in two steps:
- Preferences, awareness, perceptions of known schools' characteristics:
 - Suffices for demand under counterfactuals with given info assignment (e.g. full info)
- Admissions chances, beliefs about unknowns, search costs and technology:
 - Needed for endogenous info acquisition, e.g. change in info before search decisions

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = \mathbf{1}(\pi_{ijt}^* > 0) + \mathbf{1}(\pi_{ijt}^* > 1).$$
⁽²⁾

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^z + \hat{x}_{ij}^{2,rc}\beta_i^x + \delta_j + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
(5)

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

• π_{ijt}^* : index for awareness (can't apply if $\pi_{ijt}^* < 0$), perceptions (more accurate if $\pi_{ijt}^* > 1$.)

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi^*_{ijt} > 0) + 1(\pi^*_{ijt} > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

• π_{ijt}^* : index for awareness (can't apply if $\pi_{ijt}^* < 0$), perceptions (more accurate if $\pi_{ijt}^* > 1$.)

z: distance

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

• π_{ijt}^* : index for awareness (can't apply if $\pi_{ijt}^* < 0$), perceptions (more accurate if $\pi_{ijt}^* > 1$.)

Excluded info shifters w: treatment indicators, search (pin clicks, profile views)

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

• π_{ijt}^* : index for awareness (can't apply if $\pi_{ijt}^* < 0$), perceptions (more accurate if $\pi_{ijt}^* > 1$.)

• Off-platform learning: shocks $\nu_{ij} \sim N(0, \Sigma^{\nu})$, time indicators $w_{ijt}^{rc} \sim N(\mu^{rc,\pi}, \Sigma^{rc,\pi})$.

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

- $\hat{u}_{ii}^{\pi_{ijt}}$: subj. expected payoff of *j* given *i*'s info at time *t*.
 - True price and quality category $x \in \{1, \ldots, 4\}^2$. Subj. perceptions: \hat{x} .

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

- $\hat{u}_{ii}^{\pi_{ijt}}$: subj. expected payoff of *j* given *i*'s info at time *t*.
 - Shock $\varepsilon_{ij} \sim N(0, \sigma^2)$. Low-info $\hat{\varepsilon}_{ij}^1$: classical meas. error; shrink using misspecified model.

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{2,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

û^{π_{iji}}_{ij}: subj. expected payoff of j given i's info at time t.
 RC's: x̂, 1, z.

• Information:

$$\pi_{ijt}^* = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
(1)

$$\pi_{ijt} = 1(\pi_{ijt}^* > 0) + 1(\pi_{ijt}^* > 1).$$
⁽²⁾

• Payoffs and Perceptions:

$$\hat{u}_{ij}^{(2)} = z_{ij}\beta^z + \hat{x}_{ij}^{2,rc}\beta_i^x + \delta_j + \hat{x}_{ij}^{(2)}\gamma + \varepsilon_{ij}$$
(3)

$$\hat{u}_{ij}^{(1)} = z_{ij}\beta^{z} + \hat{x}_{ij}^{1,rc}\beta_{i}^{x} + \delta_{j} + \hat{x}_{ij}^{(1)}\gamma + \hat{\varepsilon}_{ij}^{(1)}$$
(4)

$$\hat{x}_{ij}^{(1)} \sim \Gamma(\cdot|x_j), \quad \hat{x}_{ij}^{(2)} = (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}_{ij}^{(1)})$$
 (5)

- $\hat{u}_{ii}^{\pi_{ijt}}$: subj. expected payoff of *j* given *i*'s info at time *t*.
 - Mean utility and "discoverability" (δ, η) : correlated RE; means depend on (true) x.

• Step 1 Estimation: Gibbs Sampler

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".
- Step 2: model admissions optimism and compression; subj. beliefs *F*(x); subj. dist'n of (*ĉ*₁, *ε*); click probs if search; search costs.

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".
- Step 2: model admissions optimism and compression; subj. beliefs *F*(x); subj. dist'n of (*ĉ*₁, *ε*); click probs if search; search costs.
 - Search is sequential.

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".
- Step 2: model admissions optimism and compression; subj. beliefs *F*(x); subj. dist'n of (*ĉ*₁, *ε*); click probs if search; search costs.
 - Search is sequential.
 - conditional on "one more pin click", discovered school is stochastic.

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".
- Step 2: model admissions optimism and compression; subj. beliefs *F*(x); subj. dist'n of (*ĉ*₁, ε); click probs if search; search costs.
 - Search is sequential.
 - conditional on "one more pin click", discovered school is stochastic.
 - "one-step lookahead" heuristic: search if subj. gain $E(\hat{U}_i(\pi')|\pi_{it}) \hat{U}(\pi_{it})$ exceeds cost.

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".
- Step 2: model admissions optimism and compression; subj. beliefs *F*(x); subj. dist'n of (*ĉ*₁, ε); click probs if search; search costs.
 - Search is sequential.
 - conditional on "one more pin click", discovered school is stochastic.
 - "one-step lookahead" heuristic: search if subj. gain $E(\hat{U}_i(\pi')|\pi_{it}) \hat{U}(\pi_{it})$ exceeds cost.
 - Beliefs over unknowns: latent heterogeneity; nests Bayesian updating

- Step 1 Estimation: Gibbs Sampler
- Exploit repeated within-person measurements of \hat{x}, π , rankings.
 - Many objects (awareness, perceptions) observed.
 - $\hat{\varepsilon}$: are "known by name" schools excessively penalized / overdispersed?
- Allow meas. error on every survey variable.
- ID: info shifters are (random, exogenous) treatments, (endog.) clicks.
 - "Change of variables, then DiD".
- Step 2: model admissions optimism and compression; subj. beliefs *F*(x); subj. dist'n of (*ε̂*₁, *ε*); click probs if search; search costs.
 - Search is sequential.
 - conditional on "one more pin click", discovered school is stochastic.
 - "one-step lookahead" heuristic: search if subj. gain $E(\hat{U}_i(\pi')|\pi_{it}) \hat{U}(\pi_{it})$ exceeds cost.
 - Beliefs over unknowns: latent heterogeneity; nests Bayesian updating
- Estimation: MLE/SMLE.

Counterfactuals Overview

Gains from full information + decomposition:

- Base simulation: remove treatments
- ▶ Full information: full information about all schools + we correct all misperceptions
- Better search (S^*) : improves and simplifies the search technology
- Better search (S^*) + correct biases, misperceptions, and imperfect information

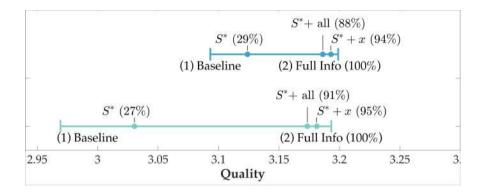
Search Activity and Search Costs:

- Does individual level search change with counterfactuals?
- Gradual Reduction in Search Costs

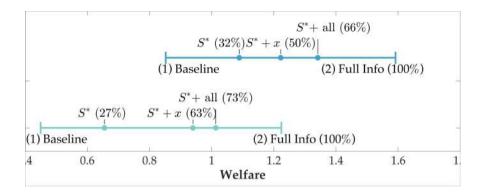
Misspecified models:

- Estimate the model dropping data on \hat{x} and ignoring misperceptions
- Effects on countrerfactual analysis

Gains of Full Information + Decomposition



Gains of Full Information + Decomposition



- Improving search technology induces 47% more search.
- $S^* \rightarrow S^* + X$: zero avg. effect on search, but large absolute changes; some search more, others less.
- Gradual reduction in search costs: need to almost eliminate to beat better info.
- Misspecified models: assume $\hat{x} = x$, get *wrong sign* of quality impacts of info provision.

Conclusions

- Results: Households' inaccurate perceptions distort search and applications
 - Households value quality but respond to perception, not truth.
 - Systematically overestimate quality of initial most-preferred "known" school.
- Counterfactuals: Perfect takeup of info intervention would close quality SES gap
 - Differences between groups: perceptions of x's, not admissions optimism or prefs.
 - But in practice, high-education households respond more to our search intervention.
- Methods: Crucial to model biases/imperfect awareness of "known" options.
- Agenda: This paper takes schools' quality, peers as given. Input for eqbm analysis.