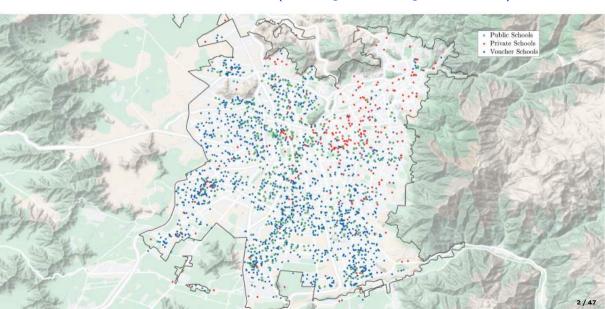
Biased Beliefs and Search in Education Markets

Claudia Allende, Patrick Agte, Adam Kapor, Christopher Neilson, Fernando Ochoa

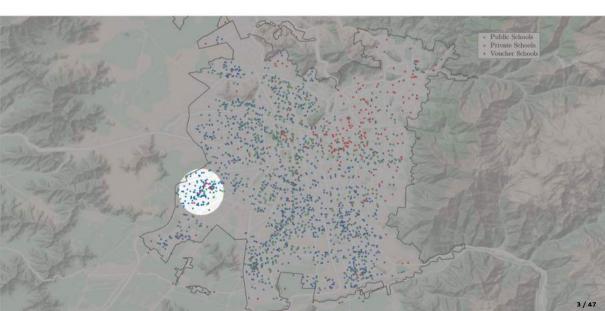
Stanford GSB; Princeton University; Yale University; New York University

October 2023

Urban Education Markets in Chile (Santiago, Kindergarden Level)



Zoom into a 2km Radius Area



Almost 100 Schools Offering K Among Which Families Can Choose

• Families sometimes send their kids to low performing schools when higher-performing options are available.

• Families sometimes send their kids to low performing schools when higher-performing options are available. Why?

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - ▶ Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options,

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - ▶ Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - ▶ Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante
 - Lots of heterogeneity:

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - ▶ Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante
 - ☑ Lots of heterogeneity: vertical (price, quality) and horizontal (location, fit, ...)

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - ▶ Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante
 - Lots of heterogeneity: vertical (price, quality) and horizontal (location, fit, ...)
 - Uncertainty about admissions

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - ▶ Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante
 - Lots of heterogeneity: vertical (price, quality) and horizontal (location, fit, ...)
 - Uncertainty about admissions → need to pick portfolio

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante
 - Lots of heterogeneity: vertical (price, quality) and horizontal (location, fit, ...)
 - Uncertainty about admissions → need to pick portfolio
- When discovering and evaluating schools is costly, effort depend on beliefs about returns:

- Families sometimes send their kids to low performing schools when higher-performing options are available. Why?
 - ▶ One reason: parents may value other characteristics (culture, theme, "fit", ...)
 - Alternatively / in addition: in markets like Santiago, choosing a school can be difficult:
 - Many options, not all known ex ante
 - Lots of heterogeneity: vertical (price, quality) and horizontal (location, fit, ...)
 - Uncertainty about admissions → need to pick portfolio
- When discovering and evaluating schools is costly, effort depend on beliefs about returns:
- We ask: how do families' (inaccurate) beliefs/info interact with search costs to affect families' search, applications, and school assignments?

• To address RQ, need to know:

- To address RQ, need to know:
 - What do families want/know/believe?

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - ▶ State-of-the-art SPDA procedure maps rank-order lists to assignments.

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:
 - Create + provide a "school explorer" app with personalized school info.

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - ▶ State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:
 - Create + provide a "school explorer" app with personalized school info.
 - Conduct RCTs of information interventions via this app

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - ▶ State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:
 - Create + provide a "school explorer" app with personalized school info.
 - Conduct RCTs of information interventions via this app
 - Conduct additional "feedback" RCT using admin app data

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - ▶ State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:
 - Create + provide a "school explorer" app with personalized school info.
 - Conduct RCTs of information interventions via this app
 - Conduct additional "feedback" RCT using admin app data
 - Conduct multi-round household surveys to measure beliefs, preferences, awareness sets pre- and post-treatment.

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - ▶ State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:
 - Create + provide a "school explorer" app with personalized school info.
 - Conduct RCTs of information interventions via this app
 - Conduct additional "feedback" RCT using admin app data
 - Conduct multi-round household surveys to measure beliefs, preferences, awareness sets pre- and post-treatment.
 - Link clicks, surveys, admin data. descriptive analysis + evaluate field experiments.

- To address RQ, need to know:
 - What do families want/know/believe?
 - How do they search for schools?
 - What happens when we address biases / provide accurate info?
- Setting: Chile's nationwide centralized school choice process.
 - State-of-the-art SPDA procedure maps rank-order lists to assignments.
 - We focus on how households form these lists.
- Methods: novel microdata + field experiments + model:
 - Create + provide a "school explorer" app with personalized school info.
 - Conduct RCTs of information interventions via this app
 - Conduct additional "feedback" RCT using admin app data
 - Conduct multi-round household surveys to measure beliefs, preferences, awareness sets pre- and post-treatment.
 - Link clicks, surveys, admin data. descriptive analysis + evaluate field experiments.
 - 5 Set up and estimate model of search and demand + simulate counterfactuals.

• Direct evidence of imperfect awareness and costly, history-dependent search

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ...

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info:

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: levels

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.
 - ▶ Low-SES households would gain .2 quality points ($\approx 1/4$ sd of quality measure).

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.
 - ▶ Low-SES households would gain .2 quality points ($\approx 1/4$ sd of quality measure).
 - ▶ Impacts roughly 2x larger than for high-SES hh.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.
 - ▶ Low-SES households would gain .2 quality points ($\approx 1/4$ sd of quality measure).
 - Impacts roughly 2x larger than for high-SES hh.
 - ▶ ≈ 0.07 sd gain in value added (non-college-grad), 0.03 sd gain (college-grad mother)

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.
 - ▶ Low-SES households would gain .2 quality points ($\approx 1/4$ sd of quality measure).
 - ▶ Impacts roughly 2x larger than for high-SES hh.
 - ▶ ≈ 0.07 sd gain in value added (non-college-grad), 0.03 sd gain (college-grad mother)
- Perfect info about observables (price, quality index): would achieve all of benchmark's gains in school quality; close SES gap.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.
 - ▶ Low-SES households would gain .2 quality points ($\approx 1/4$ sd of quality measure).
 - Impacts roughly 2x larger than for high-SES hh.
 - ▶ ≈ 0.07 sd gain in value added (non-college-grad), 0.03 sd gain (college-grad mother)
- Perfect info about observables (price, quality index): would achieve all of benchmark's gains in school quality; close SES gap.
 - ▶ Consistent w/ lower takeup of our interventions but larger returns among low-SES hh.

- Direct evidence of imperfect awareness and costly, history-dependent search
- Households hold noisy beliefs about admissions; F(price, quality), ... but first-order problem is systematic overestimation of quality of known, liked schools.
 - ▶ Info about distribution of $X's \rightarrow$ affects beliefs, apps, outcomes
 - "Search" impacts larger for higher-SES: match to higher VA schools if high-SES.
 - "feedback" affects beliefs, apps as well.
- Significant cost of status-quo beliefs relative to perfect info: <u>levels</u> and inequality.
 - ▶ Low-SES households would gain .2 quality points ($\approx 1/4$ sd of quality measure).
 - Impacts roughly 2x larger than for high-SES hh.
 - ▶ ≈ 0.07 sd gain in value added (non-college-grad), 0.03 sd gain (college-grad mother)
- Perfect info about observables (price, quality index): would achieve all of benchmark's gains in school quality; close SES gap.
 - ► Consistent w/ lower takeup of our interventions but larger returns among low-SES hh.
 - Caveat: larger welfare gains for full info than "info about x's".

Literature

- We are looking at "consumer search" and demand in a high stakes setting.
 - De Los Santos et al (2012; 2017) Dinerstein et al (2018); Hodgson Lewis (2022); Moraga-Gonzales et al (2022); ...
 - ▶ Health plan choice: Handel and Kolstad (2015), ...
- Providing information about "X's" of schools can affect applications:
 - Hastings Weinstein (2008); Mizala Urquiola (2013); Corcoran et al (2017, 2022); Andrabi Das Khwaja (2017); Allende Gallego Neilson (2019); Bergman Chan Kapor (2020)
- Giving info about admissions chances can affect apps and assignments.
 - ► Hoxby Turner (2013, 2015); Gurantz et al (2021); Ajayi Friedman Lucas (2022)
 - Search → admissions beliefs relevant, even under SPDA. (AKNZ 2022)
- This paper's contributions:
 - ▶ Novel data on search and beliefs + information experiments:
 - ⇒ provide direct evidence that inaccurate beliefs distort search decisions
 - Estimate demand w/ limited consideration (extending consideration-set approach (Goeree (2008)) to allow inaccurate perceptions of "known" options), imperfect info, rich prefs:
 - \implies quantify welfare and school-quality impacts of addressing misperceptions + search costs

Outline

- Model
- Setting and interventions
- Data and descriptive analysis
- Estimation and counterfactuals

Outline

- Model
- Setting and interventions
- Data and descriptive analysis
- Estimation and counterfactuals

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\begin{split} \pi_{ijt} &= z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt} \\ \hat{u}_{ijt} &= z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}), \end{split} \tag{Awareness, time t)}$$

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\begin{split} \pi_{ijt} &= z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt} \\ \hat{u}_{ijt} &= z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}), \end{split} \tag{Awareness, time t)}$$

• \hat{u}_{ijt} : payoff from j given info π_{ijt} ;

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\begin{split} \pi_{ijt} &= z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt} & \text{(Awareness, time t)} \\ \hat{u}_{ijt} &= z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}), & \text{(Subj. EU, time t)} \end{split}$$

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\begin{split} \pi_{ijt} &= z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt} \\ \hat{u}_{ijt} &= z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}), \end{split} \tag{Awareness, time t}$$

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\begin{split} \pi_{ijt} &= z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt} \\ \hat{u}_{ijt} &= z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}), \end{split} \tag{Awareness, time t}$$

Distance
$$z_{ij}$$
 Observable quality/price index $\in \{1,\dots,4\}^2$ x_{ij}

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

Distance	z_{ij}
Observable quality/price index $\in \{1,\ldots,4\}^2$	x_{ij}
Unobserved match value	$arepsilon_{ij}$

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

Distance	z_{ij}
Observable quality/price index $\in \{1,\ldots,4\}^2$	x_{ij}
Unobserved match value	$arepsilon_{ij}$
Rejection probability	r_{ij}

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\begin{split} \pi_{ijt} &= z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt} \\ \hat{u}_{ijt} &= z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}), \end{split} \tag{Awareness, time t}$$

Distance	z_{ij}
Observable quality/price index $\in \{1,\dots,4\}^2$	x_{ij}
Unobserved match value	$arepsilon_{ij}$
Rejection probability	r_{ij}
Mean Utility and Discoverability	δ_j, η_j

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

Distance	z_{ij}
Observable quality/price index $\in \{1,\ldots,4\}^2$	$ imes_{ij}$
Unobserved match value	$arepsilon_{ij}$
Rejection probability	r_{ij}
Mean Utility and Discoverability	δ_j, η_j
Treatments, search activity: excluded from \hat{u}	w_{ijt}

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_i + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

• \hat{u}_{ijt} : payoff from j given info π_{ijt} ; depends on <u>real characteristics</u> and on <u>subjective beliefs</u>

Distance	z_{ij}	
Observable quality/price index $\in \{1,\dots,4\}^2$	$ imes_{ij}$	$\hat{x}_{ij}(\pi_{ijt})$
Unobserved match value	$arepsilon_{ij}$	$\hat{arepsilon}_{ij}(\pi_{ijt})$
Rejection probability	r_{ij}	$\hat{r}_{ij}(\pi_{ijt})$
Mean Utility and Discoverability	δ_j, η_j	
Treatments, search activity: excluded from \hat{u}	w _{iit}	

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

• \hat{u}_{ijt} : payoff from j given info π_{ijt} ; depends on <u>real characteristics</u> and on <u>subjective beliefs</u>

Distance	z_{ij}	
Observable quality/price index $\in \{1,\dots,4\}^2$	$ imes_{ij}$	$\hat{x}_{ij}(\pi_{ijt})$
Unobserved match value	$arepsilon_{ij}$	$\hat{arepsilon}_{ij}(\pi_{ijt})$
Rejection probability	r_{ij}	$\hat{r}_{ij}(\pi_{ijt})$
Mean Utility and Discoverability	δ_j, η_j	
Treatments, search activity: excluded from \hat{u}	w_{ijt}	

• π plays two roles:

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

• \hat{u}_{ijt} : payoff from j given info π_{ijt} ; depends on real characteristics and on subjective beliefs

Distance	z_{ij}	
Observable quality/price index $\in \{1,\dots,4\}^2$	x_{ij}	$\hat{x}_{ij}(\pi_{ijt})$
Unobserved match value	$arepsilon_{ij}$	$\hat{arepsilon}_{ij}(\pi_{ijt})$
Rejection probability	r_{ij}	$\hat{r}_{ij}(\pi_{ijt})$
Mean Utility and Discoverability	δ_j, η_j	
Treatments, search activity: excluded from \hat{u}	w_{ijt}	

- π plays two roles:
 - ▶ $\pi_{ijt} < 0 \rightarrow$ student doesn't know j at all.

• Student $i \in \mathcal{I}$ chooses among schools $j \in J_i \subset J$ (schools within 5km).

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ii}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_i + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt}),$$
 (Subj. EU, time t)

• \hat{u}_{ijt} : payoff from j given info π_{ijt} ; depends on real characteristics and on subjective beliefs

Distance	z_{ij}	
Observable quality/price index $\in \{1,\ldots,4\}^2$	$ imes_{ij}$	$\hat{x}_{ij}(\pi_{ijt})$
Unobserved match value	$arepsilon_{ij}$	$\hat{arepsilon}_{ij}(\pi_{ijt})$
Rejection probability	r_{ij}	$\hat{r}_{ij}(\pi_{ijt})$
Mean Utility and Discoverability	δ_j, η_j	
Treatments, search activity: excluded from \hat{u}	w_{ijt}	

- π plays two roles:
 - ▶ π_{iit} < 0 → student doesn't know *j* at all.
 - ▶ $\pi_{ijt} > 1$ → more accurately perceive observables (x_{ij}) , match value (ε_{ij}) .

$$\pi_{ijt} = z_{ij}\alpha^{z} + w_{ijt}\alpha^{w} + w_{ijt}^{rc}\alpha_{i}^{rc} + \eta_{j} + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = z_{ij}\beta^{z} + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_{i}^{rc} + \delta_{j} + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt})$$
 (Subj. EU, time t)

$$\pi_{ijt} = z_{ij}\alpha^{z} + w_{ijt}\alpha^{w} + w_{ijt}^{rc}\alpha_{i}^{rc} + \eta_{j} + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = z_{ij}\beta^{z} + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_{i}^{rc} + \delta_{j} + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt})$$
 (Subj. EU, time t)

$$\pi_{ijt} = z_{ij}\alpha^{z} + w_{ijt}\alpha^{w} + w_{ijt}^{rc}\alpha_{i}^{rc} + \eta_{j} + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = z_{ij}\beta^{z} + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_{i}^{rc} + \delta_{j} + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt})$$
 (Subj. EU, time t)

$$t = 0$$
 Student *i* endowed with info (π_{i0}) , associated perceptions $(\hat{x}, \hat{\varepsilon}, \Omega)$

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)

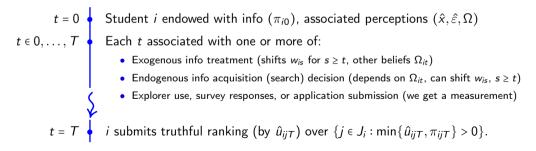
$$\hat{u}_{ijt} = z_{ij}\beta^z + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_i^{rc} + \delta_j + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt})$$
 (Subj. EU, time t)

• Explorer use, survey responses, or application submission (we get a measurement)

$$t=0 \qquad \text{Student i endowed with info } (\pi_{i0}), \text{ associated perceptions } (\hat{x}, \hat{\varepsilon}, \Omega) \\ t \in 0, \dots, T \qquad \text{Each t associated with one or more of:} \\ \bullet \text{ Exogenous info treatment (shifts w_{is} for $s \geq t$, other beliefs Ω_{it})} \\ \bullet \text{ Endogenous info acquisition (search) decision (depends on Ω_{it}, can shift w_{is}, $s \geq t$)}$$

$$\pi_{ijt} = z_{ij}\alpha^{z} + w_{ijt}\alpha^{w} + w_{ijt}^{rc}\alpha_{i}^{rc} + \eta_{j} + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = z_{ij}\beta^{z} + \hat{x}_{ij}^{rc}(\pi_{ijt})\beta_{i}^{rc} + \delta_{j} + \hat{x}_{ij}(\pi_{ijt})\gamma + \hat{\varepsilon}_{ij}(\pi_{ijt})$$
 (Subj. EU, time t)



• Search decision rule: At each step, students choose whether to continue:

- **Search decision rule:** At each step, students choose whether to continue:
 - ► Compute subjective EU of the optimal portfolio given current info:

$$\hat{U}_{it} = \sum_{j=1}^{M_i} \left(\prod_{k < j} \hat{r}_{ik} \right) (1 - \hat{r}_{ij}) \hat{u}_{ijt},$$

where \hat{r} are subjective rejection probabilities, and $\hat{u}_{i1t} > \ldots > \hat{u}_{iMt} > 0$ WLoG.

- **Search decision rule:** At each step, students choose whether to continue:
 - Compute subjective EU of the optimal portfolio given current info:

$$\hat{U}_{it} = \sum_{j=1}^{M_i} \left(\prod_{k < j} \hat{r}_{ik} \right) (1 - \hat{r}_{ij}) \hat{u}_{ijt},$$

where \hat{r} are subjective rejection probabilities, and $\hat{u}_{i1t} > \ldots > \hat{u}_{iMt} > 0$ WLoG.

► Compute expected SEU of optimal portfolio after sampling one more school:

$$\hat{E}(\hat{U}_{it}'|\Omega_{it})$$

- **Search decision rule:** At each step, students choose whether to continue:
 - Compute subjective EU of the optimal portfolio given current info:

$$\hat{U}_{it} = \sum_{j=1}^{M_i} \left(\prod_{k < j} \hat{r}_{ik} \right) (1 - \hat{r}_{ij}) \hat{u}_{ijt},$$

where \hat{r} are subjective rejection probabilities, and $\hat{u}_{i1t} > \ldots > \hat{u}_{iMt} > 0$ WLoG.

► Compute expected SEU of optimal portfolio after sampling one more school:

$$\hat{E}(\hat{U}'_{it}|\Omega_{it})$$

Continue if the expected gains from searching exceed the costs:

$$\hat{E}(\hat{U}'_{it}|\Omega_{it}) - \hat{U}_{it} > c_i(n)$$

where $c_i(n)$ depends on number of clicks (n), baseline characteristics $(\pi^0$, others), Ω_{it} is all current information and beliefs.

Model: Sequential Search

- Search decision rule: At each step, students choose whether to continue:
 - Compute subjective EU of the optimal portfolio given current info:

$$\hat{U}_{it} = \sum_{j=1}^{M_i} \left(\prod_{k < j} \hat{r}_{ik}\right) (1 - \hat{r}_{ij}) \hat{u}_{ijt},$$

where \hat{r} are subjective rejection probabilities, and $\hat{u}_{i1t} > \ldots > \hat{u}_{iMt} > 0$ WLoG.

► Compute expected SEU of optimal portfolio after sampling one more school:

$$\hat{E}(\hat{U}'_{it}|\Omega_{it})$$

Continue if the expected gains from searching exceed the costs:

$$\hat{E}(\hat{U}'_{it}|\Omega_{it}) - \hat{U}_{it} > c_i(n)$$

where $c_i(n)$ depends on number of clicks (n), baseline characteristics $(\pi^0$, others), Ω_{it} is all current information and beliefs.

• **Search technology:** what *i* finds next when searching is "directed" but exogenous:

$$Pr({\sf view}\; j|{\sf continue}) \propto \exp(x_{ij}^{\sf click} \gamma^{\sf click})$$

Model: Sequential Search

- Search decision rule: At each step, students choose whether to continue:
 - ► Compute subjective EU of the optimal portfolio given current info:

$$\hat{U}_{it} = \sum_{j=1}^{M_i} \left(\prod_{k < j} \hat{r}_{ik}\right) \left(1 - \hat{r}_{ij}\right) \hat{u}_{ijt},$$

where \hat{r} are subjective rejection probabilities, and $\hat{u}_{i1t} > \ldots > \hat{u}_{iMt} > 0$ WLoG.

► Compute expected SEU of optimal portfolio after sampling one more school:

$$\hat{E}(\hat{U}'_{it}|\Omega_{it})$$

Continue if the expected gains from searching exceed the costs:

$$\hat{E}(\hat{U}'_{it}|\Omega_{it}) - \hat{U}_{it} > c_i(n)$$

where $c_i(n)$ depends on number of clicks (n), baseline characteristics $(\pi^0$, others), Ω_{it} is all current information and beliefs.

• **Search technology:** what *i* finds next when searching is "directed" but exogenous:

$$Pr(\text{view } j | \text{continue}) \propto \exp(x_{ii}^{\text{click}} \gamma^{\text{click}})$$

* From previous slides: awareness (π) shifters w_{ijt} include indicator for having inspected j at $s \le t$

- Beliefs about admissions: optimism/pessimism and compression.
 - true rejection chance is rij
 - hh believes $\hat{r}_{ij} = \max\{\min\{o_{i0} + o_{i1}(r_{ij} o_{i0}) + \nu_{ij}^a, 1\}, 0\}.$

- Beliefs about admissions: optimism/pessimism and compression.
 - true rejection chance is rij
 - hh believes $\hat{r}_{ij} = \max\{\min\{o_{i0} + o_{i1}(r_{ij} o_{i0}) + \nu_{ij}^a, 1\}, 0\}.$
- **Beliefs** about value of known schools: U_{it}
 - Over-optimistic about $\hat{x}_{i1t} \implies$ overestimate value of current portfolio.
 - We model "distortion functions": $\hat{x}_{ijt} \sim \Gamma(\cdot|x_{ij}; \pi_{ijt})$.

- Beliefs about admissions: optimism/pessimism and compression.
 - ▶ true rejection chance is r_{ij}
 - hh believes $\hat{r}_{ij} = \max\{\min\{o_{i0} + o_{i1}(r_{ij} o_{i0}) + \nu_{ij}^a, 1\}, 0\}.$
- **Deliefs** about value of known schools: U_{it}
 - Over-optimistic about $\hat{x}_{i1t} \implies$ overestimate value of current portfolio.
 - We model "distortion functions": $\hat{x}_{ijt} \sim \Gamma(\cdot|x_{ij}; \pi_{ijt})$.
- **Beliefs over "** \hat{u} of next school to be discovered": subjective distribution $\hat{F}_i(\cdot)$

- Beliefs about admissions: optimism/pessimism and compression.
 - true rejection chance is rij
 - hh believes $\hat{r}_{ij} = \max\{\min\{o_{i0} + o_{i1}(r_{ij} o_{i0}) + \nu_{ij}^a, 1\}, 0\}.$
- \square Beliefs about value of known schools: U_{it}
 - Over-optimistic about $\hat{x}_{i1t} \implies$ overestimate value of current portfolio.
 - We model "distortion functions": $\hat{x}_{ijt} \sim \Gamma(\cdot|x_{ij}; \pi_{ijt})$.
- **Beliefs over "** \hat{u} of next school to be discovered": subjective distribution $\hat{F}_i(\cdot)$
 - Search Technology: Salience/ease of finding good schools

$$Pr(\text{view } j | \text{continue}) \propto \exp(x_{ij}^{\text{click}} \gamma^{\text{click}})$$

where $\gamma^{
m click}$ are weights and $x^{
m click}_{ij}$ varies w/ treatment

- Beliefs about admissions: optimism/pessimism and compression.
 - true rejection chance is rij
 - hh believes $\hat{r}_{ij} = \max\{\min\{o_{i0} + o_{i1}(r_{ij} o_{i0}) + \nu_{ij}^a, 1\}, 0\}.$
- \square Beliefs about value of known schools: U_{it}
 - Over-optimistic about $\hat{x}_{i1t} \implies$ overestimate value of current portfolio.
 - We model "distortion functions": $\hat{x}_{ijt} \sim \Gamma(\cdot|x_{ij}; \pi_{ijt})$.
- **Beliefs over "** \hat{u} of next school to be discovered": subjective distribution $\hat{F}_i(\cdot)$
 - Search Technology: Salience/ease of finding good schools

$$Pr(\text{view } j | \text{continue}) \propto \exp(x_{ij}^{\text{click}} \gamma^{\text{click}})$$

where γ^{click} are weights and x_{ii}^{click} varies w/ treatment

Beliefs about dist'n of (price, quality):

$$(x|\pi_{iit} < 0) \sim \text{Multinomial}(\lambda_{it}), \text{ with } \lambda \sim Dir(\Lambda_{it})$$

where Λ_{it} function of truth, N. "known" schools with (perceived) chars \hat{x} , treatments

- Beliefs about admissions: optimism/pessimism and compression.
 - true rejection chance is rij
 - hh believes $\hat{r}_{ij} = \max\{\min\{o_{i0} + o_{i1}(r_{ij} o_{i0}) + \nu_{ij}^a, 1\}, 0\}.$
- \square Beliefs about value of known schools: U_{it}
 - Over-optimistic about $\hat{x}_{i1t} \implies$ overestimate value of current portfolio.
 - We model "distortion functions": $\hat{x}_{ijt} \sim \Gamma(\cdot|x_{ij}; \pi_{ijt})$.
- **Beliefs over "** \hat{u} of next school to be discovered": subjective distribution $\hat{F}_i(\cdot)$
 - Search Technology: Salience/ease of finding good schools

$$Pr(\text{view } j | \text{continue}) \propto \exp(x_{ij}^{\text{click}} \gamma^{\text{click}})$$

where γ^{click} are weights and x_{ii}^{click} varies w/ treatment

Beliefs about dist'n of (price, quality):

$$(x|\pi_{iit} < 0) \sim \text{Multinomial}(\lambda_{it}), \text{ with } \lambda \sim Dir(\Lambda_{it})$$

where Λ_{it} function of truth, N. "known" schools with (perceived) chars \hat{x} , treatments

▶ Beliefs about the distribution of match quality: Optimism/pessimism

$$\varepsilon_{ij} \sim N(\hat{\mu}, \hat{\sigma}^2)$$
, where the truth is $N(0, \sigma_{\varepsilon}^2)$

Outline

- Model
- Setting and interventions
- Data and descriptive analysis
- Estimation and counterfactuals

Chilean School Choice Process

- Chile uses a student-proposing deferred acceptance procedure for centralized assignment
- Single nationwide online platform
 - ▶ Pre-K to 12th grade
 - ▶ Public and Voucher schools ⇒ approximately 90% of total enrollment
 - Applicants concentrate on entry levels: Pre-K (23.50%), Kindergarten (7.89%), 1st grade (13.62%) and 9th grade (25%)
- Students allocated based on quotas and priorities.
- In 2021, 3,088,505 (85.17%) students enrolled in public and voucher schools
 - ⇒ Of these, 461,223 (14.93%) participated in the regular round

Interventions

- Personalized Search
 - Universe: Households w/ children entering the regular education system for the first time.
 - 3,948 participants, recruited from preschools.

Treatments:

- 1. Control: Access to explorer
- 2. Treatment 1: Access to explorer + Distribution
- 3. Treatment 2: Access to explorer + Distribution + Report Card + Highlight schools with p = 0, quality $\in \{3, 4\}$.

Interventions

- Personalized Search
 - Universe: Households w/ children entering the regular education system for the first time.
 - 3,948 participants, recruited from preschools.

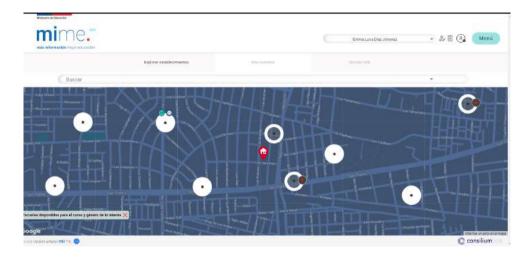
Treatments:

- 1. Control: Access to explorer
- 2. Treatment 1: Access to explorer + Distribution
- Treatment 2: Access to explorer + Distribution + Report Card + Highlight schools with p = 0, quality $\in \{3, 4\}$.
- Personalized Feedback
 - ▶ Universe: Households with a valid SAE application one week before the end of main application period. Restrict to urban markets, grades {Pre-K, K, 1, 9}.
 - 162k participants, 45k of which have > 0 risk of non-assignment.
 - This paper: we restrict to intersection with search sample.

Treatments:

- Personalized feedback about schools in portfolio; risk warning; list of recommendations; access to explorer.
- Pure control (Whatsapp message)

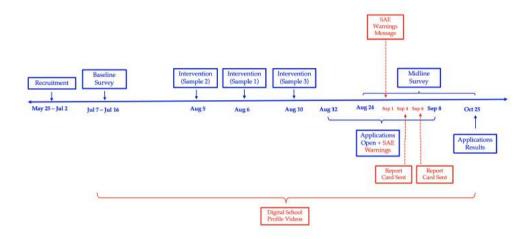
Treatments: School Explorer

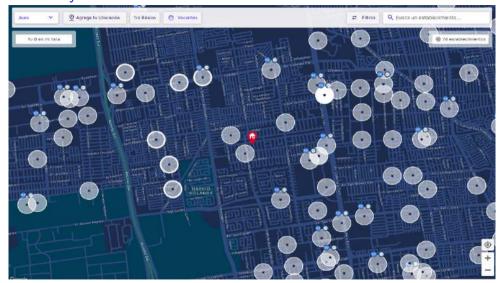


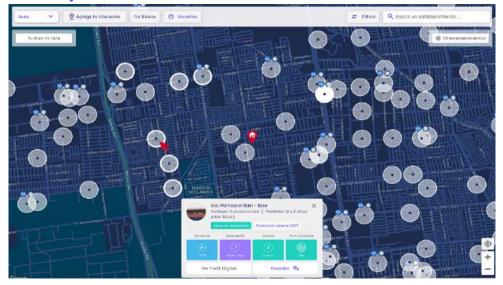
Treatments: Treatment 1

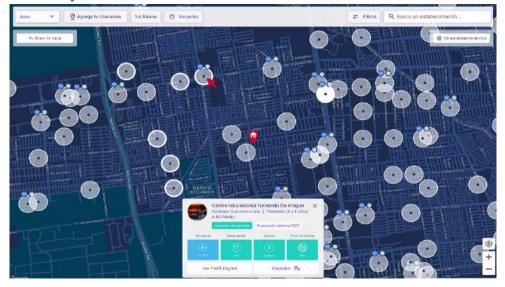
Treatments: Treatment 2

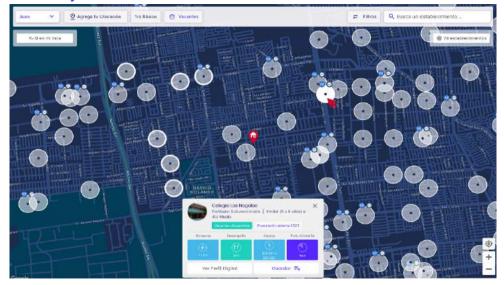
Timing Intervention 2021



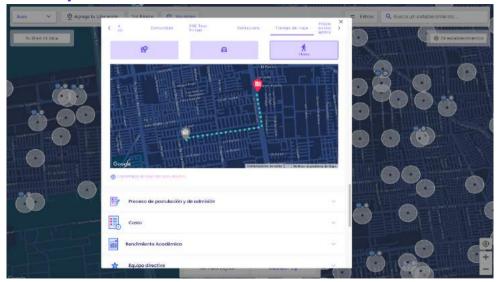


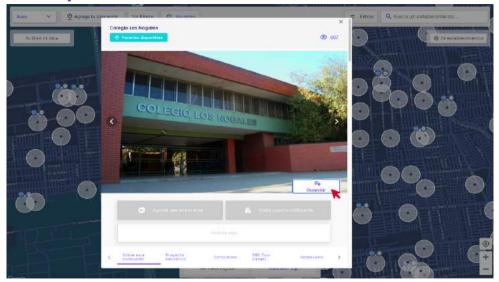










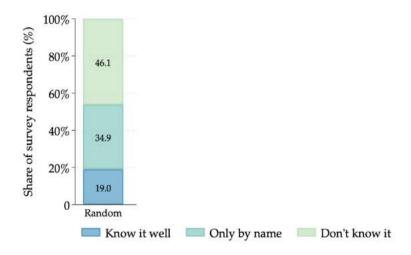


Personalized feedback

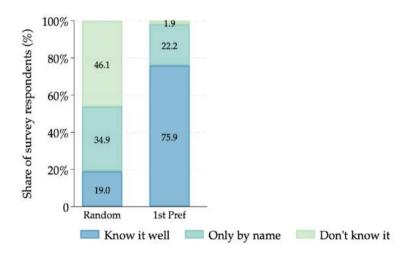
Outline

- Model
- Setting and interventions
- Data and descriptive analysis
- Estimation and counterfactuals

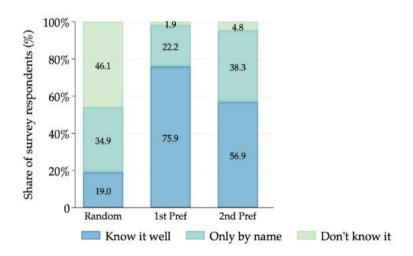
Fact 1a: households do not know all schools



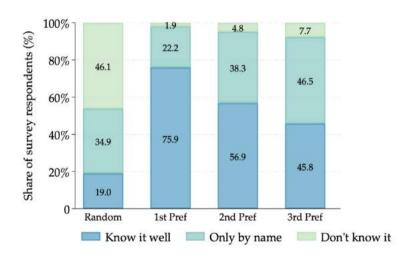
Fact 1b: First preference known well



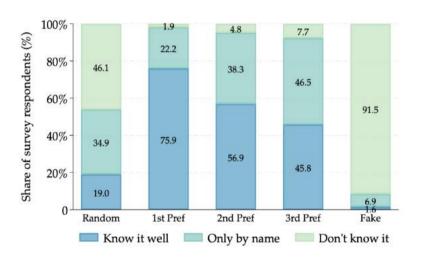
Fact 1c: Second preference known less well



Fact 1d: Third preference known less well



Fact 1e: Don't know fake school



Fact 2: Households overestimate quality and price of unknown schools

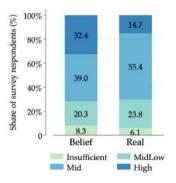


Figure 1: Quality

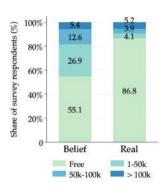
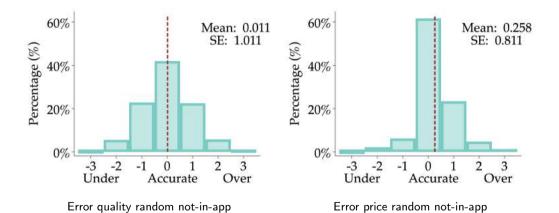


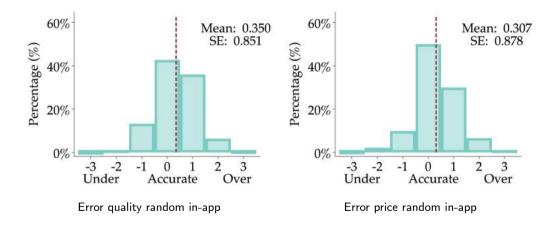
Figure 2: Price

▶ Quality index and value added

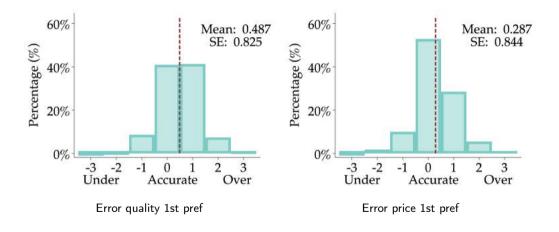
Fact 3a: Households also misinformed about price, quality of **known** schools



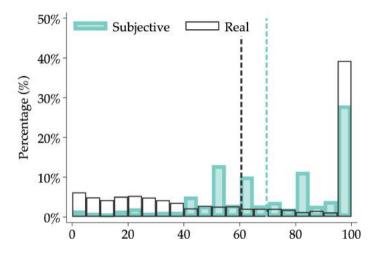
Fact 3b: Households overestimate quality of schools they apply to



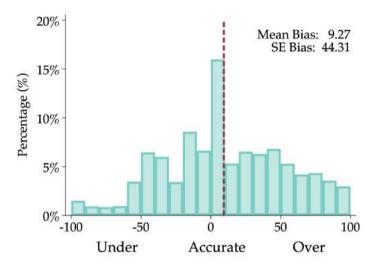
Fact 3c: Households overestimate quality of first-choice school



Fact 4: Households also mispredict admissions chances



Fact 4: Households also mispredict admissions chances

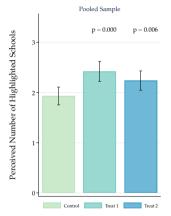


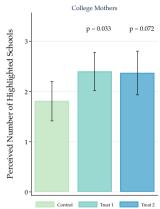
Empirical Strategy for Personalized Search Experiment

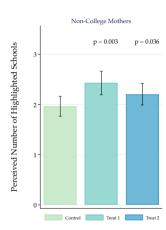
$$Y_i = \alpha + \beta_1 T 1_i + \beta_2 T 2_i + \lambda_i + \gamma X_i + \varepsilon_i.$$

- $T1_i, T2_i$: treatment status λ_i : strata fixed effect X_i : baseline controls (selected through double-lasso)
- Show separate results for college (23%) and non-college mothers (77%).

Treatment Affects Beliefs

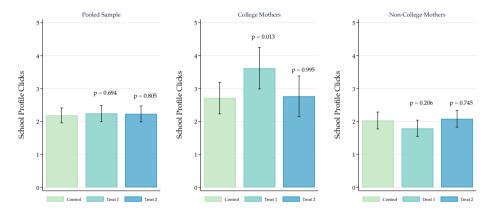






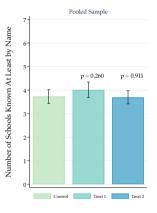
▶ Regression Table

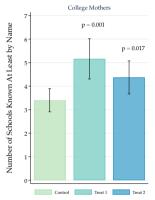
Treatment Increases Search for College Mothers

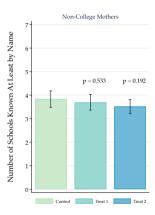


• Similar treatment effects in two follow-up experiments in Chile and DR. Details

Treatment Affects Knowledge for College Mothers

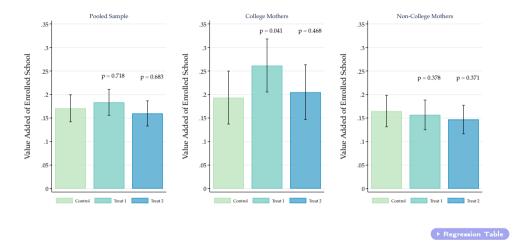






→ Regression Table

Treatment Affects Enrollment



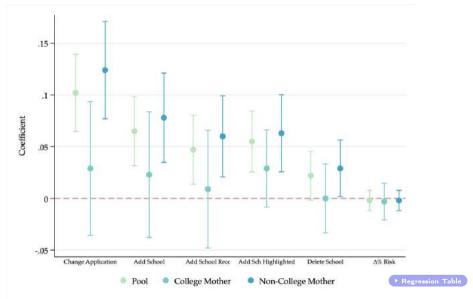
• Treatment 2 increases likelihood that 2nd ranked school in application is highlighted.

Empirical Strategy for Personalized Feedback Experiment

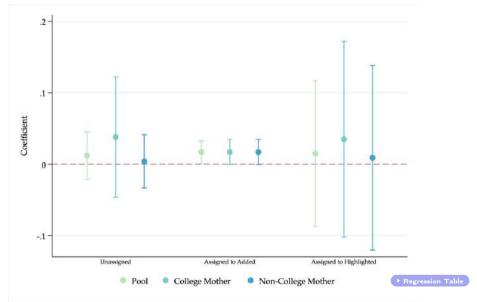
$$Y_i = \alpha + \beta T_i + \lambda_i + \gamma X_i + \varepsilon_i.$$

- T_i : treatment status λ_i : strata fixed effect X_i : baseline controls
- Use treatment assignment as instrument for opening feedback intervention.

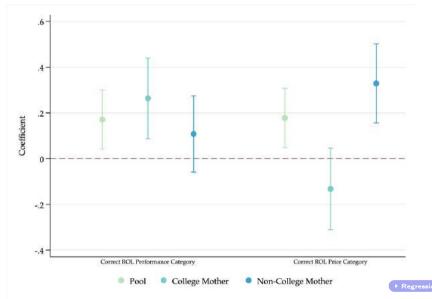
Feedback Treatment Affects Application



Feedback Treatment Affects Assignment



Feedback Treatment Affects Knowledge



Descriptive Analysis: Summary

- Households do not know all nearby schools.
 - ► In paper: high-quality schools (somewhat) more likely to be known at baseline ► Table
- Households hold inaccurate beliefs:
 - $\blacksquare F(price, quality)$ over schools they don't know
 - admissions chances
 - quality and price of "known" schools
 - ▶ In paper: rankings respond to subj. beliefs not truth ▶ Table
- Information treatments:
 - shift beliefs (all), search effort (college moms), apps and matches (VA, college moms)
 - ► Sample is balanced ► Table
 - ► Heterogeneity not driven by differences in choice sets or beliefs ► More
- Search activity:
 - occurs almost entirely in a short period after we prompt people Timing Search Actions
 - effort responds to subjective beliefs
 - stopping rule depends on history (i.e. search looks sequential)
 - clicks predict knowledge of schools, accurate beliefs, applications

Outline

- Model
- Setting and interventions
- Data and descriptive analysis
- Estimation and counterfactuals

Empirics: preferences (u) and awareness (π)

We specialize to three levels of knowledge, "potential utilities":

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = 1(\pi_{ijt} > 1)u_{ij}^h(\hat{x}_{ij}^h) + 1(0 < \pi_{ijt} \le 1)u_{ij}^l(\hat{x}_{ij}^l)$$
 (Subj. EU, time t)

Can know a school well $(\pi_{ijt} > 1)$, somewhat $(0 < \pi_{ijt} \le 1)$, or not at all $(\pi_{ijt} < 0)$.

Empirics: preferences (u) and awareness (π)

We specialize to three levels of knowledge, "potential utilities":

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = 1(\pi_{ijt} > 1)u_{ii}^h(\hat{x}_{ij}^h) + 1(0 < \pi_{ijt} \le 1)u_{ij}^l(\hat{x}_{ij}^l)$$
 (Subj. EU, time t)

Can know a school well $(\pi_{ijt} > 1)$, somewhat $(0 < \pi_{ijt} \le 1)$, or not at all $(\pi_{ijt} < 0)$.

$$u_{ij}^{h}(\hat{x}_{ij}^{h}) = z_{ij}\beta^{z} + \hat{x}_{ij}^{h,rc}\beta_{i}^{rc} + \delta_{j} + \hat{x}_{ij}^{h}\gamma + \varepsilon_{ij}$$
 (Subj. EU, high info)

$$u_{ij}^{l}(\hat{x}_{ij}^{l}) = z_{ij}\beta^{z} + \hat{x}_{ij}^{l,rc}\beta_{i}^{rc} + \delta_{j} + \hat{x}_{ij}^{l}\gamma + \hat{E}(\varepsilon_{ij}|\tilde{\varepsilon}_{ij})$$
 (Subj. EU, low info)

$$\hat{x}_{ij}^{l} \sim \Gamma(\cdot|x_{j}), \quad \hat{x}_{ij}^{h} = (x_{j} \text{ w.p. } p^{h}, \text{ otherwise } \hat{x}_{ij}^{l})$$
 (Perceived "observables")

"know well" \implies better knowledge of match value, (stochastically) better signal of x.

Empirics: preferences (u) and awareness (π)

We specialize to three levels of knowledge, "potential utilities":

$$\pi_{ijt} = z_{ij}\alpha^z + w_{ijt}\alpha^w + w_{ijt}^{rc}\alpha_i^{rc} + \eta_j + \nu_{ijt}$$
 (Awareness, time t)

$$\hat{u}_{ijt} = 1(\pi_{ijt} > 1)u_{ij}^h(\hat{x}_{ij}^h) + 1(0 < \pi_{ijt} \le 1)u_{ij}^l(\hat{x}_{ij}^l)$$
 (Subj. EU, time t)

Can know a school well $(\pi_{ijt} > 1)$, somewhat $(0 < \pi_{ijt} \le 1)$, or not at all $(\pi_{ijt} < 0)$.

$$\begin{aligned} u^h_{ij}(\hat{x}^h_{ij}) &= z_{ij}\beta^z + \hat{x}^{h,rc}_{ij}\beta^{rc}_i + \delta_j + \hat{x}^h_{ij}\gamma + \varepsilon_{ij} \\ u^l_{ij}(\hat{x}^l_{ij}) &= z_{ij}\beta^z + \hat{x}^{l,rc}_{ij}\beta^{rc}_i + \delta_j + \hat{x}^h_{ij}\gamma + \hat{E}(\varepsilon_{ij}|\tilde{\varepsilon}_{ij}) \\ \hat{x}^l_{ij} &\sim \Gamma(\cdot|x_j), \quad \hat{x}^h_{ij} &= (x_j \text{ w.p. } p^h, \text{ otherwise } \hat{x}^l_{ij}) \end{aligned} \qquad \text{(Subj. EU, low info)}$$

"know well" \implies better knowledge of match value, (stochastically) better signal of x.

- Correlated random effects: $(\eta_j, \delta_j)' \sim N((x_j \overline{\alpha}, x_j \overline{\beta})', \Sigma^{\eta \delta})$.
- Random coefficients: $\beta_i^{rc} \sim MVN(0, \Sigma^{rc}), \ \alpha_i \sim MVN(0, \Sigma^{\alpha rc}).$
- Post-search (exogenous) off-platform learning: $(\nu_{ii}^0, \dots, \nu_{ii}^T)' \sim N(\overline{\eta}, \Sigma^{\pi})$, with $\overline{\eta}_0 = 0$.
- Shock $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$. If $\pi_{ijt} \in (0, 1)$, observe w/ normal noise; shrink to subj. prior.

Estimation Overview

We estimate the model in two steps:

- **I** Estimate $(u, \pi, \hat{x}, \beta_i^x)$, associated index and VCV params) via Gibbs sampler.
 - Data:
 - baseline (survey) ROL; administrative "just-before-feedback" and "final" ROLs
 - treatment assignments and responses; explorer "detail views";
 - 3 survey waves of: "how well do you know", perceived x's; 2 waves beliefs about F(x).
 - w: treatments, highlight, detail views. RC's on $(1, \text{dist}, \hat{x})$.
 - ▶ Normalizations: mean coef on distance = −1; $E(\varepsilon)$ = 0.
 - Include (and estimate) measurement error on every survey variable.
 - ID: use repeated within-person measurements of ROL, π , \hat{x} ; variation in treatment assignments and search outcomes.
- Estimate remaining parameters using optimality of search decisions.
 - Estimate admissions beliefs, "x" beliefs (Λ), (click probabilities | continue) via MLE.
 - Compute subjective expected utility of search at each history using these objects and results from (1).
 - W/ SEU of search in hand, estimate search cost distribution via SMLE.

Random Effects: Mean Utility (δ) and Discoverability (η)

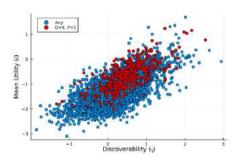


Figure 5: Non-College Mother

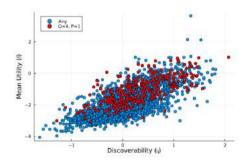


Figure 6: College Grad

Random Effects: Mean Utility (δ) and Discoverability (η)

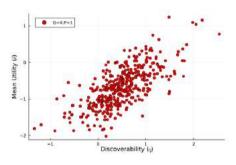


Figure 5: Non-College Mother

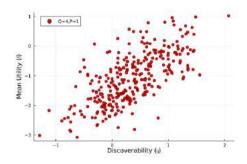


Figure 6: College Grad

We compare:

Baseline (as in data)

- Baseline (as in data)
- Provide accurate info about price, quality (i.e. $\hat{x} := x$), just before apps are due, taking awareness as given.

- Baseline (as in data)
- Provide accurate info about price, quality (i.e. $\hat{x} := x$), just before apps are due, taking awareness as given.
- Provide accurate info about distribution of x's, x of known schools, and admissions chance, at time t = 0.

- Baseline (as in data)
 - Provide accurate info about price, quality (i.e. $\hat{x} := x$), just before apps are due, taking awareness as given.
- Provide accurate info about distribution of x's, x of known schools, and admissions chance, at time t = 0.
 - ► This is a best-case "early" info intervention.

- Baseline (as in data)
- Provide accurate info about price, quality (i.e. $\hat{x} := x$), just before apps are due, taking awareness as given.
- Provide accurate info about distribution of x's, x of known schools, and admissions chance, at time t = 0.
 - ▶ This is a best-case "early" info intervention.
- III Full-info benchmark: $\hat{x} = x$ and $\pi_{ij}^T > 1$ for all (i, j) with dist_{ij} < 5km.

- Baseline (as in data)
- Provide accurate info about price, quality (i.e. $\hat{x} := x$), just before apps are due, taking awareness as given.
- Provide accurate info about distribution of x's, x of known schools, and admissions chance, at time t = 0.
 - ▶ This is a best-case "early" info intervention.
- In Full-info benchmark: $\hat{x} = x$ and $\pi_{ij}^T > 1$ for all (i,j) with dist_{ij} < 5km.
- We also estimate a specification in which we assume $\hat{x} = x$, consider "full-info benchmark" under that specification.

Main Results: Quality

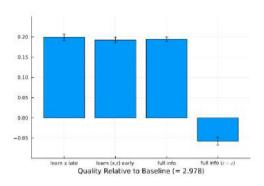


Figure 7: Non-College-Grad Mother

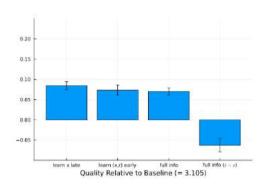


Figure 8: College Grad Mother

Main Results: Value Added

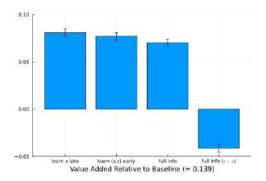


Figure 9: Non-College-Grad Mother

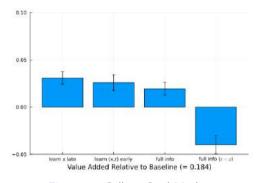


Figure 10: College Grad Mother

Main Results: Pr(Place)

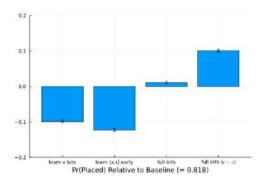


Figure 11: Non-College-Grad Mother

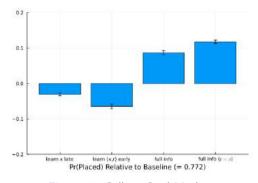


Figure 12: College Grad Mother

Main Results: Perceived Welfare

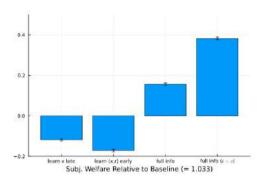


Figure 13: Non-College-Grad Mother

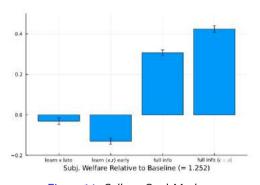


Figure 14: College Grad Mother

Main Results: Welfare

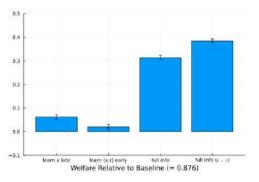


Figure 15: Non-College-Grad Mother

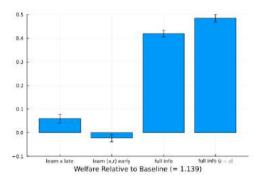


Figure 16: College Grad Mother

Search costs, biased/inaccurate beliefs interact

• Households hold inaccurate beliefs – and this distorts search and application decisions.

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - ▶ Mistaken about characteristics of schools they "know" and this reduces search effort!

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - Mistaken about characteristics of schools they "know" and this reduces search effort!
 - $\ ^{\blacktriangleright}$ In particular, households value quality but respond to perception, not truth.

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - Mistaken about characteristics of schools they "know" and this reduces search effort!
 - ▶ In particular, households value quality but respond to perception, not truth.
 - Systematically overestimate quality of initial most-preferred "known" school.

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - ▶ Mistaken about characteristics of schools they "know" and this reduces search effort!
 - ▶ In particular, households value quality but respond to perception, not truth.
 - Systematically overestimate quality of initial most-preferred "known" school.
- Perfect takeup of info interventions would completely close school-quality gap between non-college, college-grad mother hh.

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - ▶ Mistaken about characteristics of schools they "know" and this reduces search effort!
 - ▶ In particular, households value quality but respond to perception, not truth.
 - Systematically overestimate quality of initial most-preferred "known" school.
- Perfect takeup of info interventions would completely close school-quality gap between non-college, college-grad mother hh.
 - Differences between groups: perceptions of x's, not admissions optimism or prefs.
 - ▶ But in practice, high-education households respond more to our search intervention.

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - ▶ Mistaken about characteristics of schools they "know" and this reduces search effort!
 - ▶ In particular, households value quality but respond to perception, not truth.
 - Systematically overestimate quality of initial most-preferred "known" school.
- Perfect takeup of info interventions would completely close school-quality gap between non-college, college-grad mother hh.
 - Differences between groups: perceptions of x's, not admissions optimism or prefs.
 - ▶ But in practice, high-education households respond more to our search intervention.
- Methods: Crucial to model biases/imperfect awareness of "known" options.

Conclusions

Search costs, biased/inaccurate beliefs interact

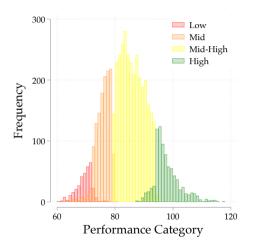
- Households hold inaccurate beliefs and this distorts search and application decisions.
 - ▶ Mistaken about characteristics of schools they "know" and this reduces search effort!
 - ▶ In particular, households value quality but respond to perception, not truth.
 - ▶ Systematically overestimate quality of initial most-preferred "known" school.
- Perfect takeup of info interventions would completely close school-quality gap between non-college, college-grad mother hh.
 - Differences between groups: perceptions of x's, not admissions optimism or prefs.
 - ▶ But in practice, high-education households respond more to our search intervention.
- Methods: Crucial to model biases/imperfect awareness of "known" options.
- Policy: Not obvious that we want to provide info broadly/early rather than targeted/timely (may be complements).

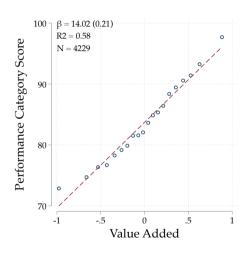
Conclusions

Search costs, biased/inaccurate beliefs interact

- Households hold inaccurate beliefs and this distorts search and application decisions.
 - ▶ Mistaken about characteristics of schools they "know" and this reduces search effort!
 - ▶ In particular, households value quality but respond to perception, not truth.
 - ▶ Systematically overestimate quality of initial most-preferred "known" school.
- Perfect takeup of info interventions would completely close school-quality gap between non-college, college-grad mother hh.
 - Differences between groups: perceptions of x's, not admissions optimism or prefs.
 - ▶ But in practice, high-education households respond more to our search intervention.
- Methods: Crucial to model biases/imperfect awareness of "known" options.
- Policy: Not obvious that we want to provide info broadly/early rather than targeted/timely (may be complements).
- Recently concluded fieldwork in additional settings (Chile 9th-grade; DR).

Performance category and Value Added





Baseline: Better Schools Known (Slightly) Better

	Know Well	Know by Name	Don't Know
High Performance	23.33%	38.02%	38.65%
Medium Performance	18.45%	36.26%	45.28%
Med-Low Performance	11.82%	32.39%	55.79%
Insufficient Performance	9.37%	28.07%	62.56%

Table 1: Baseline Awareness Set I

Reported beliefs about p, q, not truth, predict rankings

		Partial I	Ranking	Regular Rou	ınd Ranking
		(1			2)
Distance		-0.000	(0.003)	-0.048**	(0.020)
	1	-0.306**	(0.119)	0.280	(0.188)
Perceived Price Category	3	-0.226*	(0.133)	-0.152	(0.249)
	4	-1.269***	(0.236)	-0.329	(0.502)
	1	0.052	(0.118)	-0.078	(0.200)
Real Price Category	3	0.166	(0.134)	0.284	(0.233)
	4	0.153	(0.216)	0.295	(0.459)
	1	-1.683***	(0.623)	-1.593	(1.091)
Perceived Performance	3	1.894***	(0.176)	0.232	(0.241)
	4	3.712***	(0.202)	1.023***	(0.276)
	1	-0.569**	(0.252)	0.020	(0.459)
Real Performance	3	0.099	(0.113)	-0.113	(0.185)
	4	0.226*	(0.127)	0.028	(0.216)
Public School		-0.344***	(0.112)	-0.050	(0.172)
Observations		3568		1199	

Notes. This table presents a rank-ordered logit choice model. Column (1) refers to the partial ranking we elicited at baseline with perceived price and quality from responses to the baseline survey. Column (2) refers to the ranking from application data from SAE Regular Round, with perceived price and quality from responses to the midline survey.

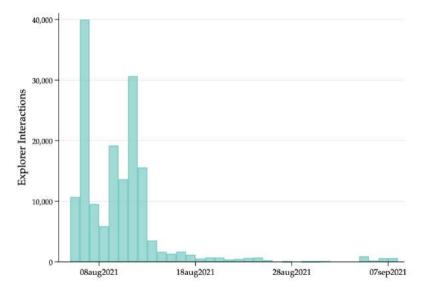
Balance Check Slides

	Cor	ntrol	Treat	ment 1	Treat	ment 2			Cor	ntrol	Treat	ment 1	Treati	ment 2	
	Mean	St. Dev.	Coeff.	St. Err.	Coeff.	St. Err.	N		Mean	St. Dev.	Coeff.	St. Err.	Coeff.	St. Err.	N
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		(1)	(2)	(3)	(4)	(5)	(6)	(7)
Panel A: Choice En	vironment	:						Panel C: Initial Know	wlege and	Beliefs					
N Schools (in SAE)	18.778	[8.903]	0.154	(0.427)	0.262	(0.433)	1,801	Satisfaction	5.144	[1.392]	0.053	(0.083)	0.017	(0.084)	1,679
N Schools (Any)	42.904	[17.580]	0.124	(0.895)	0.274	(0.894)	1,801	Pref 1 (Any)	0.911	[0.286]	-0.008	(0.017)	-0.008	(0.017)	1,801
N Highlighted (Any)	9.414	[4.785]	0.096	(0.264)	0.254	(0.260)	1,801	Pref 1 (HL)	0.490	[0.500]	0.044	(0.032)	0.026	(0.032)	1,402
								Perceived adm.	68.089	[25.839]	1.400	(1.538)	1.358	(1.533)	1,679
Panel B: Parent/Ch	ild Charac	cteristics						N Schools known A	3.608	[2.745]	-0.027	(0.158)	0.068	(0.154)	1,801
								N Schools known B	1.925	[2.126]	-0.038	(0.123)	-0.072	(0.120)	1,801
Child is female	0.483	[0.500]	0.043	(0.029)	0.040	(0.029)	1,801	Perceived N (2km)	6.803	[8.769]	-0.441	(0.420)	-0.882	(0.391)	1,801
Child's Birth Year	0.076	[0.541]	0.008	(0.031)	0.029	(0.031)	1,801	Perceived HL (2km)	2.086	[2.610]	0.124	(0.150)	-0.008	(0.144)	1,801
Mother Educ. HS	0.942	[0.234]	0.005	(0.012)	-0.006	(0.013)	1,798	SEP Eligible (Belief)	0.139	[0.346]	-0.021	(0.019)	-0.003	(0.020)	1,801
Mother Educ. Coll	0.249	[0.433]	0.000	(0.017)	-0.009	(0.017)	1,798	SEP Don't Know	0.702	[0.458]	-0.009	(0.027)	0.013	(0.026)	1,801
N younger siblings	1.141	[0.401]	0.023	(0.023)	0.008	(0.023)	1,801	Add info known	66.186	[30.149]	-2.104	(1.809)	-1.461	(1.787)	1,679
Has Disability	0.075	[0.263]	-0.007	(0.016)	-0.012	(0.016)	1,630	Add info unknown	55.858	[33.018]	1.071	(1.917)	0.454	(1.919)	1,679
Parent Sch. Staff	0.069	[0.255]	-0.010	(0.014)	-0.012	(0.014)	1,768	Would add school	0.821	[0.384]	0.005	(0.023)	0.013	(0.022)	1,679
SEP Household	0.373	[0.484]	-0.015	(0.014)	-0.018	(0.014)	1,781	Add sch. as pref 1	56.129	[29.431]	0.633	(1.808)	-0.084	(1.746)	1,679
								Add sch. blw last	66.264	[27.196]	1.109	(1.624)	-0.297	(1.612)	1,679

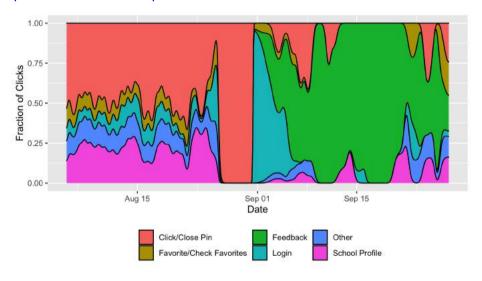
Heterogeneity Not Driven by Different Choice Environments or Beliefs

	Number of School Pin Clicks	Number of Highlighted School Pin Clicks	Value Added of Enrolled School
	(1)	(2)	(3)
Treatment 1 × College Mother	4.561**	1.461**	0.114**
	(2.110)	(0.708)	(0.047)
Treatment 1 \times Non-SEP	0.946	0.448	0.002
	(1.153)	(0.445)	(0.039)
Treatment 1 \times Below-Median Perceived Admin. Chances	1.203	0.092	0.017
	(1.353)	(0.470)	(0.036)
Treatment $1 \times \text{Number of Available Schools}$	0.063	0.014	0.002
	(0.047)	(0.018)	(0.001)
Treatment $1 \times Perceived Number of Available Schools$	-0.064	0.026	0.001
	(0.178)	(0.064)	(0.003)
Treatment $1 \times \text{Number of Available Highlighted Schools}$	-0.100	0.025	-0.005
	(0.173)	(0.066)	(0.005)
Treatment 1 \times Perceived Number of Available Highlighted Schools	0.377	0.146	0.000
	(0.277)	(0.101)	(800.0)
Observations	3,001	3,001	2,744

Almost all explorer use is just after we prompt households



Late explorer use is in response to "feedback" RCT



Selected estimates - Quality Distortion Function

Table 2: Non-College-Grad Mothers

subj. quality	true quality							
	1	2	3	4				
1	0.084 (0.017)	0.015 (0.003)	0.001 (0.001)	0.002 (0.001)				
2	0.364 (0.026)	0.291 (0.014)	0.109 (0.004)	0.054 (0.007)				
3	0.462 (0.029)	0.568 (0.012)	0.605 (0.01)	0.434 (0.014)				
4	0.089 (0.015)	0.126 (0.01)	0.285 (0.008)	0.51 (0.013)				

Table 3: College-Grad Mothers

subj. quality	true quality								
	1	2	3	4					
1	0.119 (0.085)	0.035 (0.017)	0.007 (0.005)	0.004 (0.004)					
2	0.478 (0.072)	0.451 (0.052)	0.187 (0.019)	0.085 (0.024)					
3	0.349 (0.096)	0.467 (0.04)	0.615 (0.025)	0.425 (0.031)					
4	0.053 (0.024)	0.047 (0.014)	0.191 (0.014)	0.485 (0.035)					

Main Results: Distance

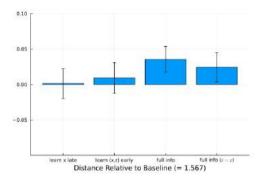


Figure 17: Non-College-Grad Mother

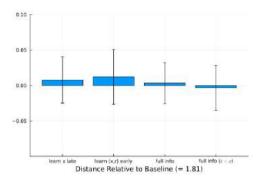


Figure 18: College Grad Mother

Main Results: Price

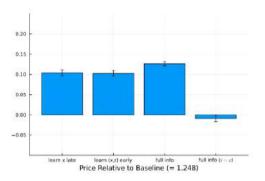


Figure 19: Non-College-Grad Mother

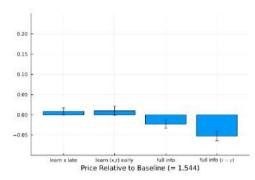


Figure 20: College Grad Mother

Main Results: Table

Table 4: Non-College-Grad Mothers

	EU	Place	E(rank)	Distance	Price	Quality	VA
baseline	0.877 (0.01)	0.818 (0.0)	1.447 (0.0)	1.567 (0.0)	1.248 (0.0)	2.978 (0.0)	0.139 (0.0)
learn x late	0.939 (0.011)	0.718 (0.006)	1.454 (0.008)	1.568 (0.021)	1.351 (0.007)	3.178 (0.008)	0.22 (0.004)
learn (x,r) early	0.896 (0.011)	0.693 (0.006)	1.44 (0.008)	1.577 (0.02)	1.35 (0.007)	3.171 (0.007)	0.217 (0.004)
full info benchmark	1.191 (0.013)	0.828 (0.006)	1.54 (0.009)	1.604 (0.021)	1.375 (0.007)	3.173 (0.009)	0.21 (0.004)
baseline ($\hat{x} = x$)	1.115 (0.035)						
full info ($\hat{x} = x$)	1.475 (0.061)	0.917 (0.004)	1.477 (0.006)	1.588 (0.014)	1.24 (0.006)	2.922 (0.008)	0.099 (0.005)

Table 5: College-Grad Mothers

EU	Place	E(rank)	Distance	Price	Quality	VA
1.134 (0.028)	0.772 (0.0)	1.703 (0.0)	1.81 (0.0)	1.544 (0.0)	3.105 (0.0)	0.184 (0.0)
1.193 (0.037)	0.74 (0.005)	1.684 (0.01)	1.817 (0.031)	1.553 (0.012)	3.192 (0.011)	0.216 (0.007)
1.111 (0.033)	0.706 (0.007)	1.64 (0.012)	1.82 (0.037)	1.554 (0.014)	3.181 (0.014)	0.211 (0.009)
1.555 (0.028)	0.858 (0.005)	1.792 (0.015)	1.814 (0.031)	1.523 (0.014)	3.178 (0.017)	0.204 (0.01)
1.171 (0.046)						
1.64 (0.061)	0.889 (0.005)	1.742 (0.021)	1.798 (0.03)	1.492 (0.015)	3.04 (0.019)	0.145 (0.01)
	1.134 (0.028) 1.193 (0.037) 1.111 (0.033) 1.555 (0.028) 1.171 (0.046)	1.134 (0.028) 0.772 (0.0) 1.193 (0.037) 0.74 (0.005) 1.111 (0.033) 0.706 (0.007) 1.555 (0.028) 0.858 (0.005) 1.171 (0.046)	1.134 (0.028) 0.772 (0.0) 1.703 (0.0) 1.193 (0.037) 0.74 (0.005) 1.684 (0.01) 1.111 (0.033) 0.706 (0.007) 1.64 (0.012) 1.555 (0.028) 0.858 (0.005) 1.792 (0.015) 1.171 (0.046)	1.134 (0.028) 0.772 (0.0) 1.703 (0.0) 1.81 (0.0) 1.193 (0.037) 0.74 (0.005) 1.684 (0.01) 1.817 (0.031) 1.111 (0.033) 0.706 (0.007) 1.64 (0.012) 1.82 (0.037) 1.555 (0.028) 0.858 (0.005) 1.792 (0.015) 1.814 (0.031) 1.171 (0.046)	1.134 (0.028) 0.772 (0.0) 1.703 (0.0) 1.81 (0.0) 1.544 (0.0) 1.193 (0.037) 0.74 (0.005) 1.684 (0.01) 1.817 (0.031) 1.553 (0.012) 1.111 (0.033) 0.706 (0.007) 1.64 (0.012) 1.82 (0.037) 1.554 (0.014) 1.555 (0.028) 0.858 (0.005) 1.792 (0.015) 1.814 (0.031) 1.523 (0.014) 1.171 (0.046)	1.134 (0.028) 0.772 (0.0) 1.703 (0.0) 1.81 (0.0) 1.544 (0.0) 3.105 (0.0) 1.193 (0.037) 0.74 (0.005) 1.684 (0.01) 1.817 (0.031) 1.553 (0.012) 3.192 (0.011) 1.111 (0.033) 0.706 (0.007) 1.64 (0.012) 1.82 (0.037) 1.554 (0.014) 3.181 (0.014) 1.555 (0.028) 0.858 (0.005) 1.792 (0.015) 1.814 (0.031) 1.523 (0.014) 3.178 (0.017) 1.171 (0.046)